These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26042532)

  • 41. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.
    Everett WN; Chern C; Sun D; McMahon RE; Zhang X; Chen WJ; Hahn MS; Sue HJ
    Toxicol Lett; 2014 Feb; 225(1):177-84. PubMed ID: 24362007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interpreting the role of NO
    Song J; Xu Y; Liu C; He Q; Huang R; Jiang S; Ma J; Wu Z; Huangfu X
    Ecotoxicol Environ Saf; 2020 May; 194():110456. PubMed ID: 32171963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions.
    Romanello MB; Fidalgo de Cortalezzi MM
    Water Res; 2013 Aug; 47(12):3887-98. PubMed ID: 23579091
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.
    Xiong D; Fang T; Yu L; Sima X; Zhu W
    Sci Total Environ; 2011 Mar; 409(8):1444-52. PubMed ID: 21296382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fate of CuO and ZnO nano- and microparticles in the plant environment.
    Dimkpa CO; Latta DE; McLean JE; Britt DW; Boyanov MI; Anderson AJ
    Environ Sci Technol; 2013 May; 47(9):4734-42. PubMed ID: 23540424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum.
    Dimkpa CO; McLean JE; Britt DW; Anderson AJ
    Biometals; 2013 Dec; 26(6):913-24. PubMed ID: 23933719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.
    Jones EH; Su C
    J Hazard Mater; 2014 Jun; 275():79-88. PubMed ID: 24853139
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.
    Jiang C; Hsu-Kim H
    Environ Sci Process Impacts; 2014 Nov; 16(11):2536-44. PubMed ID: 25220562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL; Elimelech M
    J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays.
    Hwang G; Kim D
    Environ Pollut; 2024 Jun; 351():124007. PubMed ID: 38677461
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aggregation kinetics and dissolution of coated silver nanoparticles.
    Li X; Lenhart JJ; Walker HW
    Langmuir; 2012 Jan; 28(2):1095-104. PubMed ID: 22149007
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Sulfidation on ZnO Nanoparticle Dissolution and Aggregation in Sulfate-Containing Suspensions.
    Rasool K; Lee DS
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7334-40. PubMed ID: 26716331
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells.
    Hsiao IL; Huang YJ
    Sci Total Environ; 2011 Mar; 409(7):1219-28. PubMed ID: 21255821
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.
    French RA; Jacobson AR; Kim B; Isley SL; Penn RL; Baveye PC
    Environ Sci Technol; 2009 Mar; 43(5):1354-9. PubMed ID: 19350903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.
    Konduru NV; Murdaugh KM; Swami A; Jimenez RJ; Donaghey TC; Demokritou P; Brain JD; Molina RM
    Nanotoxicology; 2016 Aug; 10(6):720-7. PubMed ID: 26581431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of colloidal zinc oxide nanoparticles with bovine serum albumin and its adsorption isotherms and kinetics.
    Sasidharan NP; Chandran P; Sudheer Khan S
    Colloids Surf B Biointerfaces; 2013 Feb; 102():195-201. PubMed ID: 23000680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zinc oxide-engineered nanoparticles: dissolution and toxicity to marine phytoplankton.
    Miao AJ; Zhang XY; Luo Z; Chen CS; Chin WC; Santschi PH; Quigg A
    Environ Toxicol Chem; 2010 Dec; 29(12):2814-22. PubMed ID: 20931607
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells.
    Fang X; Jiang L; Gong Y; Li J; Liu L; Cao Y
    Chem Biol Interact; 2017 Dec; 278():40-47. PubMed ID: 28987328
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water.
    Yu LP; Fang T; Xiong DW; Zhu WT; Sima XF
    J Environ Monit; 2011 Jul; 13(7):1975-82. PubMed ID: 21611643
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation and deposition kinetics of fullerene (C60) nanoparticles.
    Chen KL; Elimelech M
    Langmuir; 2006 Dec; 22(26):10994-1001. PubMed ID: 17154576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.