These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 26042675)
1. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients. Balasubramani PP; Chakravarthy VS; Ali M; Ravindran B; Moustafa AA PLoS One; 2015; 10(6):e0127542. PubMed ID: 26042675 [TBL] [Abstract][Full Text] [Related]
2. A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making. Balasubramani PP; Chakravarthy VS; Ravindran B; Moustafa AA Front Comput Neurosci; 2015; 9():76. PubMed ID: 26136679 [TBL] [Abstract][Full Text] [Related]
3. Impulse control disorders in Parkinson's disease are associated with dysfunction in stimulus valuation but not action valuation. Piray P; Zeighami Y; Bahrami F; Eissa AM; Hewedi DH; Moustafa AA J Neurosci; 2014 Jun; 34(23):7814-24. PubMed ID: 24899705 [TBL] [Abstract][Full Text] [Related]
4. Impaired learning of punishments in Parkinson's disease with and without impulse control disorder. Leplow B; Sepke M; Schönfeld R; Pohl J; Oelsner H; Latzko L; Ebersbach G J Neural Transm (Vienna); 2017 Feb; 124(2):217-225. PubMed ID: 27848033 [TBL] [Abstract][Full Text] [Related]
5. A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease. Guthrie M; Myers CE; Gluck MA Behav Brain Res; 2009 Jun; 200(1):48-59. PubMed ID: 19162084 [TBL] [Abstract][Full Text] [Related]
6. Reward and Punishment Learning as Predictors of Cognitive Behavioral Therapy Response in Parkinson's Disease Comorbid with Clinical Depression. Perskaudas R; Myers CE; Interian A; Gluck MA; Herzallah MM; Baum A; Dobkin RD J Geriatr Psychiatry Neurol; 2024 Jul; 37(4):282-293. PubMed ID: 38158704 [TBL] [Abstract][Full Text] [Related]
7. Dopamine-agonists and impulsivity in Parkinson's disease: impulsive choices vs. impulsive actions. Antonelli F; Ko JH; Miyasaki J; Lang AE; Houle S; Valzania F; Ray NJ; Strafella AP Hum Brain Mapp; 2014 Jun; 35(6):2499-506. PubMed ID: 24038587 [TBL] [Abstract][Full Text] [Related]
8. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Balasubramani PP; Chakravarthy VS; Ravindran B; Moustafa AA Front Comput Neurosci; 2014; 8():47. PubMed ID: 24795614 [TBL] [Abstract][Full Text] [Related]
10. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors. Claassen DO; van den Wildenberg WP; Harrison MB; van Wouwe NC; Kanoff K; Neimat JS; Wylie SA Pharmacol Biochem Behav; 2015 Feb; 129():19-25. PubMed ID: 25459105 [TBL] [Abstract][Full Text] [Related]
11. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions. Huang YT; Georgiev D; Foltynie T; Limousin P; Speekenbrink M; Jahanshahi M Neuropsychologia; 2015 Aug; 75():577-87. PubMed ID: 26184442 [TBL] [Abstract][Full Text] [Related]
12. Dopamine Selectively Modulates the Outcome of Learning Unnatural Action-Valence Associations. Van Wouwe NC; Claassen DO; Neimat JS; Kanoff KE; Wylie SA J Cogn Neurosci; 2017 May; 29(5):816-826. PubMed ID: 28129053 [TBL] [Abstract][Full Text] [Related]
13. Dose dependent dopaminergic modulation of reward-based learning in Parkinson's disease. van Wouwe NC; Ridderinkhof KR; Band GP; van den Wildenberg WP; Wylie SA Neuropsychologia; 2012 Apr; 50(5):583-91. PubMed ID: 22223079 [TBL] [Abstract][Full Text] [Related]
14. Dopamine modulates striatal response to reward and punishment in patients with Parkinson's disease: a pharmacological challenge fMRI study. Argyelan M; Herzallah M; Sako W; DeLucia I; Sarpal D; Vo A; Fitzpatrick T; Moustafa AA; Eidelberg D; Gluck M Neuroreport; 2018 May; 29(7):532-540. PubMed ID: 29432300 [TBL] [Abstract][Full Text] [Related]
15. Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease. Petersen K; Van Wouwe N; Stark A; Lin YC; Kang H; Trujillo-Diaz P; Kessler R; Zald D; Donahue MJ; Claassen DO Hum Brain Mapp; 2018 Jan; 39(1):509-521. PubMed ID: 29086460 [TBL] [Abstract][Full Text] [Related]
16. Disrupted reward processing in Parkinson's disease and its relationship with dopamine state and neuropsychiatric syndromes: a systematic review and meta-analysis. Costello H; Berry AJ; Reeves S; Weil RS; Joyce EM; Howard R; Roiser JP J Neurol Neurosurg Psychiatry; 2022 May; 93(5):555-562. PubMed ID: 34930778 [TBL] [Abstract][Full Text] [Related]
17. Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity. Berthet P; Lindahl M; Tully PJ; Hellgren-Kotaleski J; Lansner A Front Neural Circuits; 2016; 10():53. PubMed ID: 27493625 [TBL] [Abstract][Full Text] [Related]
18. Chronic exposure to dopamine agonists affects the integrity of striatal D Politis M; Wilson H; Wu K; Brooks DJ; Piccini P Neuroimage Clin; 2017; 16():455-460. PubMed ID: 28879087 [TBL] [Abstract][Full Text] [Related]
19. Single versus multiple impulse control disorders in Parkinson's disease: an ¹¹C-raclopride positron emission tomography study of reward cue-evoked striatal dopamine release. Wu K; Politis M; O'Sullivan SS; Lawrence AD; Warsi S; Bose S; Lees AJ; Piccini P J Neurol; 2015 Jun; 262(6):1504-14. PubMed ID: 25893253 [TBL] [Abstract][Full Text] [Related]
20. Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson's disease. Moustafa AA; Krishna R; Eissa AM; Hewedi DH Neuropsychology; 2013 Jul; 27(4):498-510. PubMed ID: 23876122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]