BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26042706)

  • 1. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.
    Miura K; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():189-95. PubMed ID: 26042706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-state 13C NMR study of na-cellulose complexes.
    Porro F; Bédué O; Chanzy H; Heux L
    Biomacromolecules; 2007 Aug; 8(8):2586-93. PubMed ID: 17661517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures.
    Keshk SM
    Carbohydr Polym; 2015 Jan; 115():658-62. PubMed ID: 25439945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CP/MAS (13)C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS (13)C NMR spectrum of the native cellulose.
    Kono H; Yunoki S; Shikano T; Fujiwara M; Erata T; Takai M
    J Am Chem Soc; 2002 Jun; 124(25):7506-11. PubMed ID: 12071760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution.
    Jin H; Zha C; Gu L
    Carbohydr Res; 2007 May; 342(6):851-8. PubMed ID: 17280653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.
    Jin E; Guo J; Yang F; Zhu Y; Song J; Jin Y; Rojas OJ
    Carbohydr Polym; 2016 Jun; 143():327-35. PubMed ID: 27083376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude.
    Younesi M; Wu X; Akkus O
    J Mech Behav Biomed Mater; 2019 Feb; 90():530-537. PubMed ID: 30469131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and properties of novel fibers spun from cellulose in NaOH/thiourea aqueous solution.
    Ruan D; Zhang L; Zhou J; Jin H; Chen H
    Macromol Biosci; 2004 Dec; 4(12):1105-12. PubMed ID: 15586387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution.
    Chen X; Chen J; You T; Wang K; Xu F
    Carbohydr Polym; 2015 Jul; 125():85-91. PubMed ID: 25857963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization.
    Nakano T
    J Mol Model; 2017 Apr; 23(4):129. PubMed ID: 28332081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the internal structure and dynamics of cellulose by
    Ghosh M; Kango N; Dey KK
    J Biomol NMR; 2019 Nov; 73(10-11):601-616. PubMed ID: 31414362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy.
    Oh SY; Yoo DI; Shin Y; Kim HC; Kim HY; Chung YS; Park WH; Youk JH
    Carbohydr Res; 2005 Oct; 340(15):2376-91. PubMed ID: 16153620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 degrees C and the limit of cellulose dissolution.
    Egal M; Budtova T; Navard P
    Biomacromolecules; 2007 Jul; 8(7):2282-7. PubMed ID: 17571851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CP/MAS ¹³C NMR study of pulp hornification using nanocrystalline cellulose as a model system.
    Idström A; Brelid H; Nydén M; Nordstierna L
    Carbohydr Polym; 2013 Jan; 92(1):881-4. PubMed ID: 23218380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions.
    Chen X; Burger C; Wan F; Zhang J; Rong L; Hsiao BS; Chu B; Cai J; Zhang L
    Biomacromolecules; 2007 Jun; 8(6):1918-26. PubMed ID: 17472335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules.
    Široký J; Benians TA; Russell SJ; Bechtold T; Paul Knox J; Blackburn RS
    Carbohydr Polym; 2012 Jun; 89(1):213-21. PubMed ID: 24750626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide.
    Oh SY; Yoo DI; Shin Y; Seo G
    Carbohydr Res; 2005 Feb; 340(3):417-28. PubMed ID: 15680597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Line shapes in CP/MAS (13)C NMR spectra of cellulose I.
    Larsson PT; Westlund PO
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):539-46. PubMed ID: 15953762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes.
    Kljun A; Benians TA; Goubet F; Meulewaeter F; Knox JP; Blackburn RS
    Biomacromolecules; 2011 Nov; 12(11):4121-6. PubMed ID: 21981266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (13)C NMR assignments of regenerated cellulose from solid-state 2D NMR spectroscopy.
    Idström A; Schantz S; Sundberg J; Chmelka BF; Gatenholm P; Nordstierna L
    Carbohydr Polym; 2016 Oct; 151():480-487. PubMed ID: 27474592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.