BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26042769)

  • 1. Effect of glucose on the biomechanical function of arterial elastin.
    Wang Y; Zeinali-Davarani S; Davis EC; Zhang Y
    J Mech Behav Biomed Mater; 2015 Sep; 49():244-54. PubMed ID: 26042769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanical function of arterial elastin in solutes.
    Zou Y; Zhang Y
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the viscoelastic behavior of arterial elastin in glucose via relaxation time distribution spectrum.
    Wang Y; Li H; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():634-641. PubMed ID: 29101895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and theoretical study on the anisotropy of elastin network.
    Zou Y; Zhang Y
    Ann Biomed Eng; 2009 Aug; 37(8):1572-83. PubMed ID: 19484387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties of Arterial Elastin With Water Loss.
    Wang Y; Hahn J; Zhang Y
    J Biomech Eng; 2018 Apr; 140(4):0410121-8. PubMed ID: 29305611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmural variation in elastin fiber orientation distribution in the arterial wall.
    Yu X; Wang Y; Zhang Y
    J Mech Behav Biomed Mater; 2018 Jan; 77():745-753. PubMed ID: 28838859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of static stretch on elastin degradation in arteries.
    Chow MJ; Choi M; Yun SH; Zhang Y
    PLoS One; 2013; 8(12):e81951. PubMed ID: 24358135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of Glycosaminoglycans to Collagen Fiber Recruitment in Constitutive Modeling of Arterial Mechanics.
    Mattson JM; Wang Y; Zhang Y
    J Biomech; 2019 Jan; 82():211-219. PubMed ID: 30415914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests.
    Chen Q; Wang Y; Li ZY
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):167. PubMed ID: 28155705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional variations in the nonlinearity and anisotropy of bovine aortic elastin.
    Agrawal V; Kollimada SA; Byju AG; Gundiah N
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1181-94. PubMed ID: 23397509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of collagen fiber undulation to regional biomechanical properties along porcine thoracic aorta.
    Zeinali-Davarani S; Wang Y; Chow MJ; Turcotte R; Zhang Y
    J Biomech Eng; 2015 May; 137(5):051001. PubMed ID: 25612301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The orthotropic viscoelastic behavior of aortic elastin.
    Zou Y; Zhang Y
    Biomech Model Mechanobiol; 2011 Oct; 10(5):613-25. PubMed ID: 20963623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of oxidation on the mechanical response and microstructure of porcine aortas.
    Stephen EA; Venkatasubramaniam A; Good TA; Topoleski LD
    J Biomed Mater Res A; 2014 Sep; 102(9):3255-62. PubMed ID: 24123723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of strain energy function for arterial elastin: Experiments using histology and mechanical tests.
    Gundiah N; B Ratcliffe M; A Pruitt L
    J Biomech; 2007; 40(3):586-94. PubMed ID: 16643925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanics of arterial elastin.
    Gundiah N; Ratcliffe MB; Pruitt LA
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):288-96. PubMed ID: 19627833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of mechanical properties of lamellar structure of the aortic wall: Effect of aging.
    Taghizadeh H; Tafazzoli-Shadpour M
    J Mech Behav Biomed Mater; 2017 Jan; 65():20-28. PubMed ID: 27544616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways.
    Mariano CA; Sattari S; Ramirez GO; Eskandari M
    Respir Res; 2023 Apr; 24(1):105. PubMed ID: 37031200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets.
    Ross CJ; Laurence DW; Echols AL; Babu AR; Gu T; Duginski GA; Johns CH; Mullins BT; Casey KM; Laurence KA; Zhao YD; Amini R; Fung KM; Mir A; Burkhart HM; Wu Y; Holzapfel GA; Lee CH
    Acta Biomater; 2021 Nov; 135():425-440. PubMed ID: 34481053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.