These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26043065)

  • 1. Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency.
    Mnoyan AN; Kirakosyan AG; Kim H; Jang HS; Jeon DY
    Langmuir; 2015 Jun; 31(25):7117-21. PubMed ID: 26043065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.
    Byun HJ; Lee JC; Yang H
    J Colloid Interface Sci; 2011 Mar; 355(1):35-41. PubMed ID: 21194707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The micropatterning of layers of colloidal quantum dots with inorganic ligands using selective wet etching.
    Hu C; Aubert T; Justo Y; Flamee S; Cirillo M; Gassenq A; Drobchak O; Beunis F; Roelkens G; Hens Z
    Nanotechnology; 2014 May; 25(17):175302. PubMed ID: 24722007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.
    Park JP; Kim SW
    J Nanosci Nanotechnol; 2016 May; 16(5):5312-5. PubMed ID: 27483923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface Chemistry Dictates the Enhancement of Luminescence and Stability of InP QDs upon c-ALD ZnO Hybrid Shell Growth.
    Segura Lecina O; Newton MA; Green PB; Albertini PP; Leemans J; Marshall KP; Stoian D; Loiudice A; Buonsanti R
    JACS Au; 2023 Nov; 3(11):3066-3075. PubMed ID: 38034959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Photoconductive InP Quantum Dots Films and Solar Cells.
    Crisp RW; Kirkwood N; Grimaldi G; Kinge S; Siebbeles LDA; Houtepen AJ
    ACS Appl Energy Mater; 2018 Nov; 1(11):6569-6576. PubMed ID: 30506040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications.
    Kim TG; Zherebetskyy D; Bekenstein Y; Oh MH; Wang LW; Jang E; Alivisatos AP
    ACS Nano; 2018 Nov; 12(11):11529-11540. PubMed ID: 30335943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dithiocarbamates as capping ligands for water-soluble quantum dots.
    Zhang Y; Schnoes AM; Clapp AR
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3384-95. PubMed ID: 21053924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dots.
    Hai Y; Gahlot K; Tanchev M; Mutalik S; Tekelenburg EK; Hong J; Ahmadi M; Piveteau L; Loi MA; Protesescu L
    J Am Chem Soc; 2024 May; 146(18):12808-12818. PubMed ID: 38668701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation.
    van Vugt LK; Veen SJ; Bakkers EP; Roest AL; Vanmaekelbergh D
    J Am Chem Soc; 2005 Sep; 127(35):12357-62. PubMed ID: 16131216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal, Room-Temperature Growth of Metal Oxide Shells on InP Quantum Dots.
    Park N; Beck RA; Hoang KK; Ladd DM; Abramson JE; Rivera-Maldonado RA; Nguyen HA; Monahan M; Seidler GT; Toney MF; Li X; Cossairt BM
    Inorg Chem; 2023 May; 62(17):6674-6687. PubMed ID: 37042788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications.
    Samal M; Mohapatra P; Subbiah R; Lee CL; Anass B; Kim JA; Kim T; Yi DK
    Nanoscale; 2013 Oct; 5(20):9793-805. PubMed ID: 23963403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands.
    Dai J; Xi J; Li L; Zhao J; Shi Y; Zhang W; Ran C; Jiao B; Hou X; Duan X; Wu Z
    Angew Chem Int Ed Engl; 2018 May; 57(20):5754-5758. PubMed ID: 29573090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of light-emitting-diode based on quantum dots.
    Kim S; Im SH; Kim SW
    Nanoscale; 2013 Jun; 5(12):5205-14. PubMed ID: 23695105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidally Stable CdS Quantum Dots in Water with Electrostatically Stabilized Weak-Binding, Sulfur-Free Ligands.
    Arcudi F; Westmoreland DE; Weiss EA
    Chemistry; 2019 Nov; 25(63):14469-14474. PubMed ID: 31486120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots.
    Lim J; Park M; Bae WK; Lee D; Lee S; Lee C; Char K
    ACS Nano; 2013 Oct; 7(10):9019-26. PubMed ID: 24063589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-tunable photoluminescence from block copolymer-stabilized cadmium sulfide quantum dots.
    Wang CW; Moffitt MG
    Langmuir; 2004 Dec; 20(26):11784-96. PubMed ID: 15595812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface chemistry of InP quantum dots: a comprehensive study.
    Cros-Gagneux A; Delpech F; Nayral C; Cornejo A; Coppel Y; Chaudret B
    J Am Chem Soc; 2010 Dec; 132(51):18147-57. PubMed ID: 21126088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc ions modified InP quantum dots for enhanced photocatalytic hydrogen evolution from hydrogen sulfide.
    Yu S; Xie Z; Ran M; Wu F; Zhong Y; Dan M; Zhou Y
    J Colloid Interface Sci; 2020 Aug; 573():71-77. PubMed ID: 32272299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminescence and stability of aqueous thioalkyl acid capped CdSe/ZnS quantum dots correlated to ligand ionization.
    Algar WR; Krull UJ
    Chemphyschem; 2007 Mar; 8(4):561-8. PubMed ID: 17274093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.