These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 26043798)
1. Molecular characterization of BrMYB28 and BrMYB29 paralogous transcription factors involved in the regulation of aliphatic glucosinolate profiles in Brassica rapa ssp. pekinensis. Baskar V; Park SW C R Biol; 2015 Jul; 338(7):434-42. PubMed ID: 26043798 [TBL] [Abstract][Full Text] [Related]
2. Functional analysis of three BrMYB28 transcription factors controlling the biosynthesis of glucosinolates in Brassica rapa. Seo MS; Jin M; Chun JH; Kim SJ; Park BS; Shon SH; Kim JS Plant Mol Biol; 2016 Mar; 90(4-5):503-16. PubMed ID: 26820138 [TBL] [Abstract][Full Text] [Related]
3. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). Saha G; Park JI; Ahmed NU; Kayum MA; Kang KK; Nou IS Plant Physiol Biochem; 2016 Jul; 104():200-15. PubMed ID: 27038155 [TBL] [Abstract][Full Text] [Related]
4. Expression profiles of Seo MS; Jin M; Sohn SH; Kim JS FEBS Open Bio; 2017 Nov; 7(11):1646-1659. PubMed ID: 29123974 [No Abstract] [Full Text] [Related]
5. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). Kayum MA; Park JI; Nath UK; Saha G; Biswas MK; Kim HT; Nou IS BMC Genomics; 2017 Nov; 18(1):885. PubMed ID: 29145809 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Eom SH; Baek SA; Kim JK; Hyun TK Molecules; 2018 May; 23(5):. PubMed ID: 29762546 [TBL] [Abstract][Full Text] [Related]
7. MYB transcription factors regulate glucosinolate biosynthesis in different organs of Chinese cabbage (Brassica rapa ssp. pekinensis). Kim YB; Li X; Kim SJ; Kim HH; Lee J; Kim H; Park SU Molecules; 2013 Jul; 18(7):8682-95. PubMed ID: 23881053 [TBL] [Abstract][Full Text] [Related]
8. Expression profiles of glucosinolate biosynthetic genes in turnip (Brassica rapa var. rapa) at different developmental stages and effect of transformed flavin-containing monooxygenase genes on hairy root glucosinolate content. Yang Y; Hu Y; Yue Y; Pu Y; Yin X; Duan Y; Huang A; Yang Y; Yang Y J Sci Food Agric; 2020 Feb; 100(3):1064-1071. PubMed ID: 31713870 [TBL] [Abstract][Full Text] [Related]
9. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Kayum MA; Jung HJ; Park JI; Ahmed NU; Saha G; Yang TJ; Nou IS Mol Genet Genomics; 2015 Feb; 290(1):79-95. PubMed ID: 25149146 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of the R2R3-MYB transcription factor genes in Chinese cabbage (Brassica rapa ssp. pekinensis) reveals their stress and hormone responsive patterns. Wang Z; Tang J; Hu R; Wu P; Hou XL; Song XM; Xiong AS BMC Genomics; 2015 Jan; 16(1):17. PubMed ID: 25613160 [TBL] [Abstract][Full Text] [Related]
11. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed (Brassica napus L.). Liu Y; Zhou X; Yan M; Wang P; Wang H; Xin Q; Yang L; Hong D; Yang G Theor Appl Genet; 2020 Feb; 133(2):479-490. PubMed ID: 31832742 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Identification, Expression Analysis and Functional Study of Yuan Y; Wang L; Zhao Q; Liu C; Fu X; Li X; Qiu M; Li J; Zhang Y; Li C; Qiu N; Wang F; Gao J Front Biosci (Landmark Ed); 2024 May; 29(5):198. PubMed ID: 38812324 [TBL] [Abstract][Full Text] [Related]
13. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Kim YB; Chun JH; Kim HR; Kim SJ; Lim YP; Park SU Nat Prod Commun; 2014 Apr; 9(4):533-7. PubMed ID: 24868877 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. Zang YX; Kim HU; Kim JA; Lim MH; Jin M; Lee SC; Kwon SJ; Lee SI; Hong JK; Park TH; Mun JH; Seol YJ; Hong SB; Park BS FEBS J; 2009 Jul; 276(13):3559-74. PubMed ID: 19456863 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in Singh S; Chhapekar SS; Ma Y; Rameneni JJ; Oh SH; Kim J; Lim YP; Choi SR Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638707 [TBL] [Abstract][Full Text] [Related]
16. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Wiesner M; Schreiner M; Zrenner R BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080 [TBL] [Abstract][Full Text] [Related]
17. Glucosinolate biosynthetic genes in Brassica rapa. Wang H; Wu J; Sun S; Liu B; Cheng F; Sun R; Wang X Gene; 2011 Nov; 487(2):135-42. PubMed ID: 21835231 [TBL] [Abstract][Full Text] [Related]
18. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa. Zhang J; Liu Z; Liang J; Wu J; Cheng F; Wang X J Exp Bot; 2015 Oct; 66(20):6205-18. PubMed ID: 26188204 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide identification, classification, and analysis of heat shock transcription factor family in Chinese cabbage (Brassica rapa pekinensis). Huang XY; Tao P; Li BY; Wang WH; Yue ZC; Lei JL; Zhong XM Genet Mol Res; 2015 Mar; 14(1):2189-204. PubMed ID: 25867366 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and QTL mapping analyses of major QTL genes controlling glucosinolate contents in vegetable- and oilseed-type Kim JA; Moon H; Kim HS; Choi D; Kim NS; Jang J; Lee SW; Baskoro Dwi Nugroho A; Kim DH Front Plant Sci; 2022; 13():1067508. PubMed ID: 36743533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]