These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26043824)

  • 1. A combined experimental and numerical approach to explore tribocharging of pharmaceutical excipients in a hopper chute assembly.
    Naik S; Sarkar S; Gupta V; Hancock BC; Abramov Y; Yu W; Chaudhuri B
    Int J Pharm; 2015 Aug; 491(1-2):58-68. PubMed ID: 26043824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Tribocharging of Pharmaceutical Powders in V-Blenders: Experiments, Multiscale Modeling, and Simulations.
    Naik S; Hancock B; Abramov Y; Yu W; Rowland M; Huang Z; Chaudhuri B
    J Pharm Sci; 2016 Apr; 105(4):1467-77. PubMed ID: 26921122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triboelectrification: A review of experimental and mechanistic modeling approaches with a special focus on pharmaceutical powders.
    Naik S; Mukherjee R; Chaudhuri B
    Int J Pharm; 2016 Aug; 510(1):375-85. PubMed ID: 27353731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete Element Modeling (DEM) based investigation of tribocharging in the pharmaceutical powders during hopper discharge.
    Mukherjee R; Sansare S; Nagarajan V; Chaudhuri B
    Int J Pharm; 2021 Mar; 596():120284. PubMed ID: 33508346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic powder coating: Principles and pharmaceutical applications.
    Prasad LK; McGinity JW; Williams RO
    Int J Pharm; 2016 May; 505(1-2):289-302. PubMed ID: 27085644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of electrostatic charging on pharmaceutical powder blending homogeneity.
    Pu Y; Mazumder M; Cooney C
    J Pharm Sci; 2009 Jul; 98(7):2412-21. PubMed ID: 18855912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the role of electrostatic forces on the behavior of dry pharmaceutical particulate systems.
    Desrosiers Lachiver E; Abatzoglou N; Cartilier L; Simard JS
    Pharm Res; 2006 May; 23(5):997-1007. PubMed ID: 16715390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Electrostatics on Processing and Product Performance of Pharmaceutical Solids.
    Desai PM; Tan BM; Liew CV; Chan LW; Heng PW
    Curr Pharm Des; 2015; 21(40):5923-9. PubMed ID: 26446470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DEM based computational model to predict moisture induced cohesion in pharmaceutical powders.
    Mukherjee R; Mao C; Chattoraj S; Chaudhuri B
    Int J Pharm; 2018 Jan; 536(1):301-309. PubMed ID: 29217469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triboelectrification of pharmaceutical powders by particle impact.
    Watanabe H; Ghadiri M; Matsuyama T; Ding YL; Pitt KG; Maruyama H; Matsusaka S; Masuda H
    Int J Pharm; 2007 Apr; 334(1-2):149-55. PubMed ID: 17141989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribo-electric charging and adhesion of cellulose ethers and their mixtures with flurbiprofen.
    Ghori MU; Supuk E; Conway BR
    Eur J Pharm Sci; 2014 Dec; 65():1-8. PubMed ID: 25193137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigation of Tribocharging in Pharmaceutical Powders using Surface Modified V-Blenders.
    Mehta T; Mukherjee R; Shah A; Mastriani T; Duran T; Chaudhuri B
    Pharm Res; 2023 Oct; 40(10):2371-2381. PubMed ID: 37821767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.
    Leung LY; Mao C; Srivastava I; Du P; Yang CY
    J Pharm Sci; 2017 Jul; 106(7):1865-1873. PubMed ID: 28416416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of detergent on powder triboelectrification.
    Murtomaa M; Ojanen K; Laine E; Poutanen J
    Eur J Pharm Sci; 2002 Dec; 17(4-5):195-9. PubMed ID: 12453608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cohesive, multicomponent, dense powder flow characterization by NIR.
    Benedetti C; Abatzoglou N; Simard JS; McDermott L; Léonard G; Cartilier L
    Int J Pharm; 2007 May; 336(2):292-301. PubMed ID: 17240094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental studies on the effect of moisture content and volume resistivity on electrostatic behaviour of pharmaceutical powders.
    Choi K; Taghavivand M; Zhang L
    Int J Pharm; 2017 Mar; 519(1-2):98-103. PubMed ID: 28062366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into powder tribo-charging of pharmaceuticals. Part I: Process-induced charge via twin-screw feeding.
    Beretta M; Hörmann TR; Hainz P; Hsiao WK; Paudel A
    Int J Pharm; 2020 Dec; 591():120014. PubMed ID: 33122114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of electrostatic charge decay in pharmaceutical powders and polymer materials used in dry powder inhaler devices.
    Carter PA; Rowley G; Fletcher EJ; Stylianopoulos V
    Drug Dev Ind Pharm; 1998 Nov; 24(11):1083-8. PubMed ID: 9876564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microscale granulation in a fluid bed powder processor using electrostatic atomisation.
    Kivikero N; Murtomaa M; Ingelbeen B; Antikainen O; Räsänen E; Mannermaa JP; Juppo AM
    Eur J Pharm Biopharm; 2009 Jan; 71(1):130-7. PubMed ID: 18703138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.