These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 2604392)

  • 21. Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria.
    Schennen U; Braun K; Knackmuss HJ
    J Bacteriol; 1985 Jan; 161(1):321-5. PubMed ID: 2857161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of 2,6-dimethylnaphthalene by flavobacteria.
    Barnsley EA
    Appl Environ Microbiol; 1988 Feb; 54(2):428-33. PubMed ID: 3355133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols.
    Krooneman J; Wieringa EB; Moore ER; Gerritse J; Prins RA; Gottschal JC
    Appl Environ Microbiol; 1996 Jul; 62(7):2427-34. PubMed ID: 8779583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dioxygenolytic cleavage of aryl ether bonds: 1,2-dihydro-1,2-dihydroxy-4-carboxybenzophenone as evidence for initial 1,2-dioxygenation in 3- and 4-carboxy biphenyl ether degradation.
    Engesser KH; Fietz W; Fischer P; Schulte P; Knackmuss HJ
    FEMS Microbiol Lett; 1990 Jun; 57(3):317-21. PubMed ID: 2210344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene.
    Nishino SF; Paoli GC; Spain JC
    Appl Environ Microbiol; 2000 May; 66(5):2139-47. PubMed ID: 10788393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic degradation of fluorinated aromatic compounds.
    Vargas C; Song B; Camps M; Häggblom MM
    Appl Microbiol Biotechnol; 2000 Mar; 53(3):342-7. PubMed ID: 10772477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS.
    Fetzner S; Müller R; Lingens F
    Biol Chem Hoppe Seyler; 1989 Nov; 370(11):1173-82. PubMed ID: 2610934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates.
    Meade MJ; Waddell RL; Callahan TM
    FEMS Microbiol Lett; 2001 Oct; 204(1):45-8. PubMed ID: 11682176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Degradation of bromacil by a Pseudomonas sp.
    Chaudhry GR; Cortez L
    Appl Environ Microbiol; 1988 Sep; 54(9):2203-7. PubMed ID: 3056270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptation of a phenol-degrading denitrifying bacteria to high concentration of phenol in the medium.
    Son TT; Błaszczyk M; Mycielski R
    Acta Microbiol Pol; 1998; 47(3):297-304. PubMed ID: 9990712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth on dichlorobiphenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils.
    Adebusoye SA; Picardal FW; Ilori MO; Amund OO; Fuqua C; Grindle N
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):484-92. PubMed ID: 17047953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of 3-phenoxybenzoic acid in soil by Pseudomonas pseudoalcaligenes POB310(pPOB) and two modified Pseudomonas strains.
    Halden RU; Tepp SM; Halden BG; Dwyer DF
    Appl Environ Microbiol; 1999 Aug; 65(8):3354-9. PubMed ID: 10427019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial degradation of piperonylic acid.
    Vasavada PC; Forney FW
    Antonie Van Leeuwenhoek; 1975; 41(4):479-91. PubMed ID: 1083208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catabolism of 2,4,5-trimethyoxybenzoic acid and 3-methoxycrotonic acid.
    Lee YL; Sparnins VL; Dagley S
    Appl Environ Microbiol; 1978 Apr; 35(4):817-9. PubMed ID: 646361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of naphthalene to salicylic acid by cultures of Pseudomonas denitrificans and Achromobacter sp. from the effluents of petroleum refinery.
    Martonová M; Skárka B; Radĕj Z
    Folia Microbiol (Praha); 1972; 17(1):63-5. PubMed ID: 5061369
    [No Abstract]   [Full Text] [Related]  

  • 36. [Microbial degradation of mustard gas reaction masses: isolation and selection of degradative microorganisms, analysis of organic components of reaction masses and their biodegradation].
    Ermakova IT; Safrina NS; Starovoĭtov II; Liubun' EV; Shcherbakov AA; Makarov OE; Petrova AA; Shpil'kov PA
    Mikrobiologiia; 2004; 73(3):358-63. PubMed ID: 15315229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid.
    Sparnins VL; Chapman PJ; Dagley S
    J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of polychlorinated biphenyls by two species of Achromobacter.
    Ahmed M; Focht DD
    Can J Microbiol; 1973 Jan; 19(1):47-52. PubMed ID: 4685335
    [No Abstract]   [Full Text] [Related]  

  • 39. Critical Reactions in Fluorobenzoic Acid Degradation by Pseudomonas sp. B13.
    Schreiber A; Hellwig M; Dorn E; Reineke W; Knackmuss HJ
    Appl Environ Microbiol; 1980 Jan; 39(1):58-67. PubMed ID: 16345496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1.
    Essam T; Amin MA; El Tayeb O; Mattiasson B; Guieysse B
    J Hazard Mater; 2010 Jan; 173(1-3):783-8. PubMed ID: 19783362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.