These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2604398)
1. Growth and luminescence of the bacterium Xenorhabdus luminescens from a human wound. Colepicolo P; Cho KW; Poinar GO; Hastings JW Appl Environ Microbiol; 1989 Oct; 55(10):2601-6. PubMed ID: 2604398 [TBL] [Abstract][Full Text] [Related]
2. Bioluminescence of the insect pathogen Xenorhabdus luminescens. Schmidt TM; Kopecky K; Nealson KH Appl Environ Microbiol; 1989 Oct; 55(10):2607-12. PubMed ID: 2604399 [TBL] [Abstract][Full Text] [Related]
3. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related]
4. Cloning and nucleotide sequences of lux genes and characterization of luciferase of Xenorhabdus luminescens from a human wound. Xi L; Cho KW; Tu SC J Bacteriol; 1991 Feb; 173(4):1399-405. PubMed ID: 1995589 [TBL] [Abstract][Full Text] [Related]
5. Fatty acid-enhanced binding of flavin mononucleotide to bacterial luciferase measured by steady-state fluorescence. Li Z; Meighen EA Biochem Biophys Res Commun; 1992 Oct; 188(2):497-502. PubMed ID: 1445293 [TBL] [Abstract][Full Text] [Related]
6. Construction and characterization of hybrid luciferases coded by lux genes from Xenorhabdus luminescens and Vibrio fischeri. Xi L; Tu SC Photochem Photobiol; 1993 Apr; 57(4):714-9. PubMed ID: 8506400 [TBL] [Abstract][Full Text] [Related]
7. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
8. Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. Szittner R; Meighen E J Biol Chem; 1990 Sep; 265(27):16581-7. PubMed ID: 2204626 [TBL] [Abstract][Full Text] [Related]
10. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Hosseinkhani S; Szittner R; Meighen EA Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872 [TBL] [Abstract][Full Text] [Related]
11. The nucleotide sequence of the luxA and luxB genes of Xenorhabdus luminescens HM and a comparison of the amino acid sequences of luciferases from four species of bioluminescent bacteria. Johnston TC; Rucker EB; Cochrum L; Hruska KS; Vandegrift V Biochem Biophys Res Commun; 1990 Jul; 170(2):407-15. PubMed ID: 2383248 [TBL] [Abstract][Full Text] [Related]
12. Different DNA-binding proteins in the primary and secondary forms of Xenorhabdus luminescens. Popowska M; Dziechniarz K; Paterczyk B Acta Microbiol Pol; 1993; 42(1):15-21. PubMed ID: 7504870 [TBL] [Abstract][Full Text] [Related]
13. Subunit interactions and the role of the luxA polypeptide in controlling thermal stability and catalytic properties in recombinant luciferase hybrids. Li Z; Szittner R; Meighen EA Biochim Biophys Acta; 1993 Oct; 1158(2):137-45. PubMed ID: 8399314 [TBL] [Abstract][Full Text] [Related]
14. Role of Hsp70 (DnaK-DnaJ-GrpE) and Hsp100 (ClpA and ClpB) chaperones in refolding and increased thermal stability of bacterial luciferases in Escherichia coli cells. Zavilgelsky GB; Kotova VY; Mazhul' MM; Manukhov IV Biochemistry (Mosc); 2002 Sep; 67(9):986-92. PubMed ID: 12387711 [TBL] [Abstract][Full Text] [Related]
15. Phase variation in Xenorhabdus luminescens: cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium. Wang H; Dowds BC J Bacteriol; 1993 Mar; 175(6):1665-73. PubMed ID: 8449874 [TBL] [Abstract][Full Text] [Related]
16. Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. Frackman S; Anhalt M; Nealson KH J Bacteriol; 1990 Oct; 172(10):5767-73. PubMed ID: 2211511 [TBL] [Abstract][Full Text] [Related]
17. NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCC 7744, is a flavoprotein. Inouye S FEBS Lett; 1994 Jun; 347(2-3):163-8. PubMed ID: 8033996 [TBL] [Abstract][Full Text] [Related]
18. Purification and properties of a NAD(P)H:flavin oxidoreductase from the luminous bacterium, Beneckea harveyi. Michaliszyn GA; Wing SS; Meighen EA J Biol Chem; 1977 Nov; 252(21):7495-9. PubMed ID: 303240 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of Escherichia coli expressing the lux genes of Xenorhabdus luminescens. Marincs F; White DW Appl Environ Microbiol; 1994 Oct; 60(10):3862-3. PubMed ID: 7986053 [TBL] [Abstract][Full Text] [Related]