These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 26044184)
1. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. Almuzzaini B; Sarshad AA; Farrants AK; Percipalle P BMC Biol; 2015 Jun; 13():35. PubMed ID: 26044184 [TBL] [Abstract][Full Text] [Related]
2. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. Sarshad A; Sadeghifar F; Louvet E; Mori R; Böhm S; Al-Muzzaini B; Vintermist A; Fomproix N; Östlund AK; Percipalle P PLoS Genet; 2013 Mar; 9(3):e1003397. PubMed ID: 23555303 [TBL] [Abstract][Full Text] [Related]
3. In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. Almuzzaini B; Sarshad AA; Rahmanto AS; Hansson ML; Von Euler A; Sangfelt O; Visa N; Farrants AK; Percipalle P FASEB J; 2016 Aug; 30(8):2860-73. PubMed ID: 27127100 [TBL] [Abstract][Full Text] [Related]
4. The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. Percipalle P; Fomproix N; Cavellán E; Voit R; Reimer G; Krüger T; Thyberg J; Scheer U; Grummt I; Farrants AK EMBO Rep; 2006 May; 7(5):525-30. PubMed ID: 16514417 [TBL] [Abstract][Full Text] [Related]
5. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Venit T; Semesta K; Farrukh S; Endara-Coll M; Havalda R; Hozak P; Percipalle P Commun Biol; 2020 Mar; 3(1):115. PubMed ID: 32161327 [TBL] [Abstract][Full Text] [Related]
6. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells. Sarshad AA; Corcoran M; Al-Muzzaini B; Borgonovo-Brandter L; Von Euler A; Lamont D; Visa N; Percipalle P PLoS Genet; 2014 Jun; 10(6):e1004390. PubMed ID: 24901984 [TBL] [Abstract][Full Text] [Related]
7. The chromatin remodelling complex B-WICH changes the chromatin structure and recruits histone acetyl-transferases to active rRNA genes. Vintermist A; Böhm S; Sadeghifar F; Louvet E; Mansén A; Percipalle P; Ostlund Farrants AK PLoS One; 2011 Apr; 6(4):e19184. PubMed ID: 21559432 [TBL] [Abstract][Full Text] [Related]
8. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. Cavellán E; Asp P; Percipalle P; Farrants AK J Biol Chem; 2006 Jun; 281(24):16264-71. PubMed ID: 16603771 [TBL] [Abstract][Full Text] [Related]
9. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus. Venit T; Dzijak R; Kalendová A; Kahle M; Rohožková J; Schmidt V; Rülicke T; Rathkolb B; Hans W; Bohla A; Eickelberg O; Stoeger T; Wolf E; Yildirim AÖ; Gailus-Durner V; Fuchs H; de Angelis MH; Hozák P PLoS One; 2013; 8(4):e61406. PubMed ID: 23593477 [TBL] [Abstract][Full Text] [Related]
10. Nuclear myosin 1 associates with papillomavirus E2 regulatory protein and influences viral replication. Sankovski E; Abroi A; Ustav M; Ustav M Virology; 2018 Jan; 514():142-155. PubMed ID: 29179037 [TBL] [Abstract][Full Text] [Related]
11. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Ye J; Zhao J; Hoffmann-Rohrer U; Grummt I Genes Dev; 2008 Feb; 22(3):322-30. PubMed ID: 18230700 [TBL] [Abstract][Full Text] [Related]
12. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. Dzijak R; Yildirim S; Kahle M; Novák P; Hnilicová J; Venit T; Hozák P PLoS One; 2012; 7(1):e30529. PubMed ID: 22295092 [TBL] [Abstract][Full Text] [Related]
13. Disruption of cardiac Med1 inhibits RNA polymerase II promoter occupancy and promotes chromatin remodeling. Hall DD; Spitler KM; Grueter CE Am J Physiol Heart Circ Physiol; 2019 Feb; 316(2):H314-H325. PubMed ID: 30461303 [TBL] [Abstract][Full Text] [Related]
14. The B-WICH chromatin-remodelling complex regulates RNA polymerase III transcription by promoting Max-dependent c-Myc binding. Sadeghifar F; Böhm S; Vintermist A; Östlund Farrants AK Nucleic Acids Res; 2015 May; 43(9):4477-90. PubMed ID: 25883140 [TBL] [Abstract][Full Text] [Related]
15. From transcription to transport: emerging roles for nuclear myosin I. Hofmann WA; Johnson T; Klapczynski M; Fan JL; de Lanerolle P Biochem Cell Biol; 2006 Aug; 84(4):418-26. PubMed ID: 16936815 [TBL] [Abstract][Full Text] [Related]
16. Chromatin remodeling by Pol II primes efficient Pol III transcription. Yague-Sanz C; Migeot V; Larochelle M; Bachand F; Wéry M; Morillon A; Hermand D Nat Commun; 2023 Jun; 14(1):3587. PubMed ID: 37328480 [TBL] [Abstract][Full Text] [Related]
17. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity. Kinyamu HK; Bennett BD; Bushel PR; Archer TK J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706 [TBL] [Abstract][Full Text] [Related]
18. The RNA polymerase II transcriptional machinery and its epigenetic context. Barrero MJ; Malik S Subcell Biochem; 2013; 61():237-59. PubMed ID: 23150254 [TBL] [Abstract][Full Text] [Related]
19. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Armstrong JA Biochem Cell Biol; 2007 Aug; 85(4):426-34. PubMed ID: 17713578 [TBL] [Abstract][Full Text] [Related]
20. Nuclear organization of RNA polymerase II transcription. Davidson S; Macpherson N; Mitchell JA Biochem Cell Biol; 2013 Feb; 91(1):22-30. PubMed ID: 23442138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]