These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26044275)

  • 1. Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry.
    Shestivska V; Antonowicz SS; Dryahina K; Kubišta J; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2015 Jun; 29(11):1069-79. PubMed ID: 26044275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O(+) and NO(+) with a series of volatile aldehydes of biogenic significance.
    Smith D; Chippendale TW; Španěl P
    Rapid Commun Mass Spectrom; 2014 Sep; 28(17):1917-28. PubMed ID: 25088135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of water vapour on selected ion flow tube mass spectrometric analyses of trace gases in humid air and breath.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(20):1898-906. PubMed ID: 11013418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry.
    Spanĕl P; Wang T; Smith D
    Rapid Commun Mass Spectrom; 2004; 18(16):1869-73. PubMed ID: 15329882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Spanel P
    Rapid Commun Mass Spectrom; 2010 May; 24(9):1296-304. PubMed ID: 20391601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.
    Smith D; Pysanenko A; Spanel P
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1419-25. PubMed ID: 19347971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selected ion flow tube study of the reactions of H
    Španěl P; Žabka J; Zymak I; Smith D
    Rapid Commun Mass Spectrom; 2017 Mar; 31(5):437-446. PubMed ID: 27983765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry.
    Spanĕl P; Smith D
    Rapid Commun Mass Spectrom; 2001; 15(8):563-9. PubMed ID: 11312505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A; Smith D; Španěl P
    Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined use of gas chromatography and selected ion flow tube mass spectrometry for absolute trace gas quantification.
    Kubista J; Spanel P; Dryahina K; Workman C; Smith D
    Rapid Commun Mass Spectrom; 2006; 20(4):563-7. PubMed ID: 16419024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of hydrogen sulphide in humid air by selected ion flow tube mass spectrometry.
    Spanel P; Smith D
    Rapid Commun Mass Spectrom; 2000; 14(13):1136-40. PubMed ID: 10867689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the reactions of H3O+, NO+ and O2+ ions with nine alkoxy alcohols.
    Wang T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Apr; 26(4):747-52. PubMed ID: 16836154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis.
    Smith D; Spanel P
    Mass Spectrom Rev; 2005; 24(5):661-700. PubMed ID: 15495143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary association reactions of H
    Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2022 Mar; 36(6):e9241. PubMed ID: 34904315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Switching and Selection of H
    Španěl P; Spesyvyi A; Smith D
    Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPME-GC-MS versus Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analyses for the study of volatile compound generation and oxidation status during dry fermented sausage processing.
    Olivares A; Dryahina K; Navarro JL; Smith D; Spanĕl P; Flores M
    J Agric Food Chem; 2011 Mar; 59(5):1931-8. PubMed ID: 21294565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambient analysis of trace compounds in gaseous media by SIFT-MS.
    Smith D; Spaněl P
    Analyst; 2011 May; 136(10):2009-32. PubMed ID: 21431189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS.
    Španěl P; Smith D
    Clin Mass Spectrom; 2020 Apr; 16():18-24. PubMed ID: 34820516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The combined use of thermal desorption and selected ion flow tube mass spectrometry for the quantification of xylene and toluene in air.
    Ross BM; Vermeulen N
    Rapid Commun Mass Spectrom; 2007; 21(22):3608-12. PubMed ID: 17939161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry.
    Dryahina K; Smith D; Španěl P
    Rapid Commun Mass Spectrom; 2018 May; 32(9):739-750. PubMed ID: 29486530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.