BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26044384)

  • 1. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2014 May; 1340():134-8. PubMed ID: 24671038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating Stream Broadening in Free-Flow Electrophoretic Systems Based on the Method-of-Moments Formulation.
    Dutta D
    Methods Mol Biol; 2019; 1906():167-195. PubMed ID: 30488393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stream broadening due to fluid shear across the wider transverse dimension of a free-flow zone electrophoresis channel.
    Dutta D
    Phys Fluids (1994); 2019 Jul; 31(7):073605. PubMed ID: 31371910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.
    Dutta D
    Int J Heat Mass Transf; 2016 Feb; 93():529-537. PubMed ID: 26597437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the zone broadening contributions in free-flow electrophoresis.
    Mahmud S; Ramproshad S; Deb R; Dutta D
    Electrophoresis; 2023 Oct; 44(19-20):1519-1538. PubMed ID: 37548630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Taylor-Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation.
    Caslavska J; Mosher RA; Thormann W
    Electrophoresis; 2015 Jul; 36(14):1529-38. PubMed ID: 25820794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stream broadening in free flow affinity electrophoresis.
    Dutta D
    J Chromatogr A; 2022 May; 1671():463019. PubMed ID: 35421733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microchip device for enhancing capillary zone electrophoresis using pressure-driven backflow.
    Xia L; Dutta D
    Anal Chem; 2012 Nov; 84(22):10058-63. PubMed ID: 23092536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microchip-Based Electrophoretic Separations with a Pressure-Driven Backflow.
    Xia L; Dutta D
    Methods Mol Biol; 2019; 1906():239-249. PubMed ID: 30488397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.
    Foley JP; Blackney DM; Ennis EJ
    J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of electrophoretic focusing on an inverse electromigration dispersion profile.
    Gebauer P
    Electrophoresis; 2020 Apr; 41(7-8):471-480. PubMed ID: 31550388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.