BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 26044384)

  • 21. 50-Fold Reduction of Separation Time in Open-Channel Hydrodynamic Chromatography via Lateral Vortices.
    Biagioni V; Cerbelli S
    Anal Chem; 2022 Jul; 94(27):9872-9879. PubMed ID: 35765941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion.
    Tallarek U; Rapp E; Scheenen T; Bayer E; Van As H
    Anal Chem; 2000 May; 72(10):2292-301. PubMed ID: 10845377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. System peaks in capillary zone electrophoresis of anions with negative voltage polarity and counter-electroosmotic flow.
    Sursyakova VV; Kalyakin SN; Burmakina GV; Rubaylo AI
    Electrophoresis; 2011 Jan; 32(2):210-7. PubMed ID: 21254117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-uniform surface charge distributions in CE: theoretical and experimental approach based on Taylor dispersion.
    Danger G; Pascal R; Cottet H
    Electrophoresis; 2008 Nov; 29(20):4226-37. PubMed ID: 18924104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative investigation of resolution increase of free-flow electrophoresis via simple interval sample injection and separation.
    Shao J; Fan LY; Cao CX; Huang XQ; Xu YQ
    Electrophoresis; 2012 Jul; 33(14):2065-74. PubMed ID: 22821481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduction in sample injection bias using pressure gradients generated on chip.
    Liu Y; Xia L; Dutta D
    Electrophoresis; 2021 Apr; 42(7-8):983-990. PubMed ID: 33569844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Taylor dispersion in equilibrium gradient focusing at steady state.
    Ivory CF
    Electrophoresis; 2015 Mar; 36(5):662-7. PubMed ID: 25521436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroosmotic guiding of sample flows in a laminar flow chamber.
    Besselink GA; Vulto P; Lammertink RG; Schlautmann S; van den Berg A; Olthuis W; Engbers GH; Schasfoort RB
    Electrophoresis; 2004 Nov; 25(21-22):3705-11. PubMed ID: 15565693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation of capillary zone electrophoresis with continuous free-flow zone electrophoresis: application to the analysis and purification of synthetic growth hormone releasing peptide.
    Prusík Z; Kasicka V; Mudra P; Stĕpánek J; Smékal O; Hlavácek J
    Electrophoresis; 1990 Nov; 11(11):932-6. PubMed ID: 2079039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore-scale dispersion in electrokinetic flow through a random sphere packing.
    Hlushkou D; Khirevich S; Apanasovich V; Seidel-Morgenstern A; Tallarek U
    Anal Chem; 2007 Jan; 79(1):113-21. PubMed ID: 17194128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unsteady transport phenomena in free-flow electrophoresis--prerequisite of ultrafast sample cleaning in microfluidic devices.
    Klepárník K; Otevrel M
    Electrophoresis; 2004 Nov; 25(21-22):3633-42. PubMed ID: 15565699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of large-volume sample stacking with an electroosmotic flow pump with field-amplified sample injection on cross-channel chips.
    Kitagawa F; Ishiguro T; Tateyama M; Nukatsuka I; Sueyoshi K; Kawai T; Otsuka K
    Electrophoresis; 2017 Aug; 38(16):2075-2080. PubMed ID: 28474737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating peak dispersion in free-flow counterflow gradient focusing due to electroosmotic flow.
    Courtney M; Glawdel T; Ren CL
    Electrophoresis; 2023 Apr; 44(7-8):646-655. PubMed ID: 36502493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric field gradient focusing with electro-osmotic flow to reduce analyte dispersion: Concept and numerical investigation.
    De Moor T; Lagae L; Van Hoof C; Liu C; Van Roy W
    J Chromatogr A; 2023 Jan; 1689():463726. PubMed ID: 36586281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroosmotic control of chiral separation in capillary zone electrophoresis.
    Hong S; Lee CS
    Electrophoresis; 1995 Nov; 16(11):2132-6. PubMed ID: 8748745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and minimization of band broadening in DNA electrohydrodynamic migration for enhanced size separation.
    Teillet J; Martinez Q; Tijunelyte I; Chami B; Bancaud A
    Soft Matter; 2020 Jun; 16(24):5640-5649. PubMed ID: 32510064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mathematical model describing gradient focusing methods for trace analytes.
    Ghosal S; Horek J
    Anal Chem; 2005 Aug; 77(16):5380-4. PubMed ID: 16097783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic capillary flow with nonuniform zeta potential.
    Herr AE; Molho JI; Santiago JG; Mungal MG; Kenny TW; Garguilo MG
    Anal Chem; 2000 Mar; 72(5):1053-7. PubMed ID: 10739211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.