These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 26044460)
1. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble. Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F Ultrason Sonochem; 2016 Mar; 29():447-54. PubMed ID: 26044460 [TBL] [Abstract][Full Text] [Related]
2. Theoretical model of ice nucleation induced by inertial acoustic cavitation. Part 2: Number of ice nuclei generated by a single bubble. Cogné C; Labouret S; Peczalski R; Louisnard O; Baillon F; Espitalier F Ultrason Sonochem; 2016 Jan; 28():185-191. PubMed ID: 26384898 [TBL] [Abstract][Full Text] [Related]
3. A theoretical model for ice primary nucleation induced by acoustic cavitation. Saclier M; Peczalski R; Andrieu J Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538 [TBL] [Abstract][Full Text] [Related]
4. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall. Shen Y; Yasui K; Sun Z; Mei B; You M; Zhu T Ultrason Sonochem; 2016 Mar; 29():394-400. PubMed ID: 26585020 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process. Dehane A; Merouani S; Hamdaoui O; Alghyamah A Ultrason Sonochem; 2021 May; 73():105498. PubMed ID: 33706197 [TBL] [Abstract][Full Text] [Related]
6. Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble. Nazari-Mahroo H; Pasandideh K; Navid HA; Sadighi-Bonabi R Ultrasonics; 2020 Mar; 102():106034. PubMed ID: 31670231 [TBL] [Abstract][Full Text] [Related]
7. Radial oscillation and translational motion of a gas bubble in a micro-cavity. Zhang X; Li F; Wang C; Guo J; Mo R; Hu J; Chen S; He J; Liu H Ultrason Sonochem; 2022 Mar; 84():105957. PubMed ID: 35203000 [TBL] [Abstract][Full Text] [Related]
8. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
9. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
10. The effect of static pressure on the inertial cavitation threshold. Bader KB; Raymond JL; Mobley J; Church CC; Felipe Gaitan D J Acoust Soc Am; 2012 Aug; 132(2):728-37. PubMed ID: 22894195 [TBL] [Abstract][Full Text] [Related]
11. A study on the primary and secondary nucleation of ice by power ultrasound. Chow R; Blindt R; Chivers R; Povey M Ultrasonics; 2005 Feb; 43(4):227-30. PubMed ID: 15567197 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the acoustic and bubble fields in insonified freeze-drying vials. Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984 [TBL] [Abstract][Full Text] [Related]
13. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study. Merouani S; Hamdaoui O; Rezgui Y; Guemini M Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064 [TBL] [Abstract][Full Text] [Related]
14. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ye L; Zhu X; Liu Y Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426 [TBL] [Abstract][Full Text] [Related]
15. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound. Kreider W; Crum LA; Bailey MR; Sapozhnikov OA J Acoust Soc Am; 2011 Nov; 130(5):3511-30. PubMed ID: 22088026 [TBL] [Abstract][Full Text] [Related]
16. Bubble evolution and properties in homogeneous nucleation simulations. Angélil R; Diemand J; Tanaka KK; Tanaka H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063301. PubMed ID: 25615216 [TBL] [Abstract][Full Text] [Related]
17. Experimental investigation on the effects of the standoff distance and the initial radius on the dynamics of a single bubble near a rigid wall in an ultrasonic field. Wu H; Zhou C; Pu Z; Lai X; Yu H; Li D Ultrason Sonochem; 2020 Nov; 68():105197. PubMed ID: 32570003 [TBL] [Abstract][Full Text] [Related]
18. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction. Ida M; Naoe T; Futakawa M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046309. PubMed ID: 17995108 [TBL] [Abstract][Full Text] [Related]
19. Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude. Yamamoto T; Hatanaka SI; Komarov SV Ultrason Sonochem; 2019 Nov; 58():104684. PubMed ID: 31450353 [TBL] [Abstract][Full Text] [Related]
20. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process. Guo C; Zhu X Ultrasonics; 2018 Mar; 84():13-24. PubMed ID: 29073483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]