These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 26044551)
1. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Naemi R; Chatzistergos PE; Chockalingam N Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551 [TBL] [Abstract][Full Text] [Related]
2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391 [TBL] [Abstract][Full Text] [Related]
3. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405 [TBL] [Abstract][Full Text] [Related]
4. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Gu Y; Li J; Ren X; Lake MJ; Zeng Y Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997 [TBL] [Abstract][Full Text] [Related]
5. Strain-rate dependence of viscous properties of the plantar soft tissue identified by a spherical indentation test. Negishi T; Ito K; Kamono A; Lee T; Ogihara N J Mech Behav Biomed Mater; 2020 Feb; 102():103470. PubMed ID: 31605932 [TBL] [Abstract][Full Text] [Related]
6. Force-deformation properties of the human heel pad during barefoot walking. Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425 [TBL] [Abstract][Full Text] [Related]
7. Material properties of the human calcaneal fat pad in compression: experiment and theory. Miller-Young JE; Duncan NA; Baroud G J Biomech; 2002 Dec; 35(12):1523-31. PubMed ID: 12445605 [TBL] [Abstract][Full Text] [Related]
8. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study. Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052 [TBL] [Abstract][Full Text] [Related]
9. Constitutive formulation and numerical analysis of the heel pad region. Natali AN; Fontanella CG; Carniel EL Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425 [TBL] [Abstract][Full Text] [Related]
10. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability. Spears IR; Miller-Young JE Clin Biomech (Bristol); 2006 Feb; 21(2):204-12. PubMed ID: 16289518 [TBL] [Abstract][Full Text] [Related]
11. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis. Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350 [TBL] [Abstract][Full Text] [Related]
12. In vivo biomechanical behavior of the human heel pad during the stance phase of gait. Gefen A; Megido-Ravid M; Itzchak Y J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870 [TBL] [Abstract][Full Text] [Related]
13. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis. Ahanchian N; Nester CJ; Howard D; Ren L; Parker D Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178 [TBL] [Abstract][Full Text] [Related]
14. Minimum indentation depth for characterization of 2nd sub-metatarsal head and heel pad tissue properties. Chin Teoh J; Bena Lim Y; Lee T J Biomech; 2015 Jul; 48(10):2096-101. PubMed ID: 25890816 [TBL] [Abstract][Full Text] [Related]
15. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation. Suzuki R; Ito K; Lee T; Ogihara N Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047 [TBL] [Abstract][Full Text] [Related]
16. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Chen WM; Lee PV Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181 [TBL] [Abstract][Full Text] [Related]
17. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait. Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the optimum heel pad stiffness: a modeling study. Lin CY; Chuang HJ; Cortes DH Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146 [TBL] [Abstract][Full Text] [Related]
19. Mechanical energy and effective foot mass during impact loading of walking and running. Chi KJ; Schmitt D J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749 [TBL] [Abstract][Full Text] [Related]
20. Constitutive formulation and analysis of heel pad tissues mechanics. Natali AN; Fontanella CG; Carniel EL Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]