BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26044551)

  • 1. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain-rate dependence of viscous properties of the plantar soft tissue identified by a spherical indentation test.
    Negishi T; Ito K; Kamono A; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2020 Feb; 102():103470. PubMed ID: 31605932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties of the human calcaneal fat pad in compression: experiment and theory.
    Miller-Young JE; Duncan NA; Baroud G
    J Biomech; 2002 Dec; 35(12):1523-31. PubMed ID: 12445605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.
    Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive formulation and numerical analysis of the heel pad region.
    Natali AN; Fontanella CG; Carniel EL
    Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability.
    Spears IR; Miller-Young JE
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):204-12. PubMed ID: 16289518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis.
    Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN
    Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimum indentation depth for characterization of 2nd sub-metatarsal head and heel pad tissue properties.
    Chin Teoh J; Bena Lim Y; Lee T
    J Biomech; 2015 Jul; 48(10):2096-101. PubMed ID: 25890816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical energy and effective foot mass during impact loading of walking and running.
    Chi KJ; Schmitt D
    J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.