These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26044551)

  • 41. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Med Eng Phys; 2013 Apr; 35(4):441-7. PubMed ID: 22789809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sex differences in heel pad stiffness during in vivo loading and unloading.
    Ugbolue UC; Yates EL; Wearing SC; Gu Y; Lam WK; Valentin S; Baker JS; Dutheil F; Sculthorpe NF
    J Anat; 2020 Sep; 237(3):520-528. PubMed ID: 33448360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heel pad stiffness in runners with plantar heel pain.
    Rome K; Webb P; Unsworth A; Haslock I
    Clin Biomech (Bristol, Avon); 2001 Dec; 16(10):901-5. PubMed ID: 11733128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Shock absorbency of factors in the shoe/heel interaction--with special focus on role of the heel pad.
    Jørgensen U; Bojsen-Møller F
    Foot Ankle; 1989 Jun; 9(6):294-9. PubMed ID: 2744671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simulation of mechanical responses of fingertip to dynamic loading.
    Wu JZ; Dong RG; Rakheja S; Schopper AW
    Med Eng Phys; 2002 May; 24(4):253-64. PubMed ID: 11996844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of varying material properties on the load deformation characteristics of heel cushions.
    Sun PC; Wei HW; Chen CH; Wu CH; Kao HC; Cheng CK
    Med Eng Phys; 2008 Jul; 30(6):687-92. PubMed ID: 17888713
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome.
    Tsai WC; Wang CL; Hsu TC; Hsieh FJ; Tang FT
    Foot Ankle Int; 1999 Oct; 20(10):663-8. PubMed ID: 10541000
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration.
    Sopher R; Nixon J; McGinnis E; Gefen A
    J Mech Behav Biomed Mater; 2011 May; 4(4):572-82. PubMed ID: 21396606
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The time-dependent mechanical properties of the human heel pad in the context of locomotion.
    Ker RF
    J Exp Biol; 1996 Jul; 199(Pt 7):1501-8. PubMed ID: 8699155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a clinical instrument to measure heel pad indentation.
    Rome K; Webb P
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):298-300. PubMed ID: 10675673
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The damping properties of the venous plexus of the heel region of the foot during simulated heelstrike.
    Weijers RE; Kessels AG; Kemerink GJ
    J Biomech; 2005 Dec; 38(12):2423-30. PubMed ID: 16214490
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical properties of the human heel pad: a comparison between populations.
    Rchallis JH; Murdoch C; Winter SL
    J Appl Biomech; 2008 Nov; 24(4):377-81. PubMed ID: 19075307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox.
    Pain MT; Challis JH
    J Biomech; 2001 Mar; 34(3):327-33. PubMed ID: 11182123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mathematical models to assess foot-ground interaction: an overview.
    Naemi R; Chockalingam N
    Med Sci Sports Exerc; 2013 Aug; 45(8):1524-33. PubMed ID: 23863546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical properties of heel pads reconstructed with flaps.
    Wang CL; Shau YW; Hsu TC; Chen HC; Chien SH
    J Bone Joint Surg Br; 1999 Mar; 81(2):207-11. PubMed ID: 10204922
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.