BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

598 related articles for article (PubMed ID: 26044557)

  • 41. Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseases.
    van Rheenen W; van Blitterswijk M; Huisman MH; Vlam L; van Doormaal PT; Seelen M; Medic J; Dooijes D; de Visser M; van der Kooi AJ; Raaphorst J; Schelhaas HJ; van der Pol WL; Veldink JH; van den Berg LH
    Neurology; 2012 Aug; 79(9):878-82. PubMed ID: 22843265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD.
    Moore S; Alsop E; Lorenzini I; Starr A; Rabichow BE; Mendez E; Levy JL; Burciu C; Reiman R; Chew J; Belzil VV; W Dickson D; Robertson J; Staats KA; Ichida JK; Petrucelli L; Van Keuren-Jensen K; Sattler R
    Acta Neuropathol; 2019 Jul; 138(1):49-65. PubMed ID: 30945056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice.
    Mordes DA; Morrison BM; Ament XH; Cantrell C; Mok J; Eggan P; Xue C; Wang JY; Eggan K; Rothstein JD
    Neuron; 2020 Nov; 108(4):775-783.e4. PubMed ID: 33022228
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy.
    Ho WY; Tai YK; Chang JC; Liang J; Tyan SH; Chen S; Guan JL; Zhou H; Shen HM; Koo E; Ling SC
    Autophagy; 2019 May; 15(5):827-842. PubMed ID: 30669939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis.
    Scekic-Zahirovic J; Oussini HE; Mersmann S; Drenner K; Wagner M; Sun Y; Allmeroth K; Dieterlé S; Sinniger J; Dirrig-Grosch S; René F; Dormann D; Haass C; Ludolph AC; Lagier-Tourenne C; Storkebaum E; Dupuis L
    Acta Neuropathol; 2017 Jun; 133(6):887-906. PubMed ID: 28243725
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly-GR dipeptide repeat polymers correlate with neurodegeneration and Clinicopathological subtypes in C9ORF72-related brain disease.
    Sakae N; Bieniek KF; Zhang YJ; Ross K; Gendron TF; Murray ME; Rademakers R; Petrucelli L; Dickson DW
    Acta Neuropathol Commun; 2018 Jul; 6(1):63. PubMed ID: 30029693
    [TBL] [Abstract][Full Text] [Related]  

  • 47. There has been an awakening: Emerging mechanisms of C9orf72 mutations in FTD/ALS.
    Gitler AD; Tsuiji H
    Brain Res; 2016 Sep; 1647():19-29. PubMed ID: 27059391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 49. C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis.
    Lai JD; Ichida JK
    Neurosci Lett; 2019 Nov; 713():134523. PubMed ID: 31568865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuropathologic and biochemical changes during disease progression in liver X receptor beta-/- mice, a model of adult neuron disease.
    Bigini P; Steffensen KR; Ferrario A; Diomede L; Ferrara G; Barbera S; Salzano S; Fumagalli E; Ghezzi P; Mennini T; Gustafsson JA
    J Neuropathol Exp Neurol; 2010 Jun; 69(6):593-605. PubMed ID: 20467332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(-/-) mice.
    McLean JR; Sanelli TR; Leystra-Lantz C; He BP; Strong MJ
    Glia; 2005 Oct; 52(1):59-69. PubMed ID: 15920739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. C9orf72 is required for proper macrophage and microglial function in mice.
    O'Rourke JG; Bogdanik L; Yáñez A; Lall D; Wolf AJ; Muhammad AK; Ho R; Carmona S; Vit JP; Zarrow J; Kim KJ; Bell S; Harms MB; Miller TM; Dangler CA; Underhill DM; Goodridge HS; Lutz CM; Baloh RH
    Science; 2016 Mar; 351(6279):1324-9. PubMed ID: 26989253
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurons other than motor neurons in motor neuron disease.
    Ruffoli R; Biagioni F; Busceti CL; Gaglione A; Ryskalin L; Gambardella S; Frati A; Fornai F
    Histol Histopathol; 2017 Nov; 32(11):1115-1123. PubMed ID: 28397197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunohistochemical detection of C9orf72 protein in frontotemporal lobar degeneration and motor neurone disease: patterns of immunostaining and an evaluation of commercial antibodies.
    Davidson YS; Robinson AC; Rollinson S; Pickering-Brown S; Xiao S; Robertson J; Mann DMA
    Amyotroph Lateral Scler Frontotemporal Degener; 2018 Feb; 19(1-2):102-111. PubMed ID: 28766957
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The complement factor C5a receptor is upregulated in NFL-/- mouse motor neurons.
    Humayun S; Gohar M; Volkening K; Moisse K; Leystra-Lantz C; Mepham J; McLean J; Strong MJ
    J Neuroimmunol; 2009 May; 210(1-2):52-62. PubMed ID: 19286267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and functional brain signatures of C9orf72 in motor neuron disease.
    Agosta F; Ferraro PM; Riva N; Spinelli EG; Domi T; Carrera P; Copetti M; Falzone Y; Ferrari M; Lunetta C; Comi G; Falini A; Quattrini A; Filippi M
    Neurobiol Aging; 2017 Sep; 57():206-219. PubMed ID: 28666709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases.
    Dedeene L; Van Schoor E; Vandenberghe R; Van Damme P; Poesen K; Thal DR
    Acta Neuropathol Commun; 2019 Dec; 7(1):189. PubMed ID: 31791419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.
    Lecomte MJ; Bertolus C; Santamaria J; Bauchet AL; Herbin M; Saurini F; Misawa H; Maisonobe T; Pradat PF; Nosten-Bertrand M; Mallet J; Berrard S
    Neurobiol Dis; 2014 May; 65():102-11. PubMed ID: 24486622
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Splicing repression is a major function of TDP-43 in motor neurons.
    Donde A; Sun M; Ling JP; Braunstein KE; Pang B; Wen X; Cheng X; Chen L; Wong PC
    Acta Neuropathol; 2019 Nov; 138(5):813-826. PubMed ID: 31332509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degeneration and disease progression in amyotrophic lateral sclerosis.
    Brambilla L; Guidotti G; Martorana F; Iyer AM; Aronica E; Valori CF; Rossi D
    Hum Mol Genet; 2016 Jul; 25(14):3080-3095. PubMed ID: 27288458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.