These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Weiss EA Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589 [TBL] [Abstract][Full Text] [Related]
5. Single PbS colloidal quantum dot transistors. Shibata K; Yoshida M; Hirakawa K; Otsuka T; Bisri SZ; Iwasa Y Nat Commun; 2023 Nov; 14(1):7486. PubMed ID: 37980351 [TBL] [Abstract][Full Text] [Related]
6. Air-stable and efficient inorganic-organic heterojunction solar cells using PbS colloidal quantum dots co-capped by 1-dodecanethiol and oleic acid. Kim S; Im SH; Kang M; Heo JH; Seok SI; Kim SW; Mora-Seró I; Bisquert J Phys Chem Chem Phys; 2012 Nov; 14(43):14999-5002. PubMed ID: 23034567 [TBL] [Abstract][Full Text] [Related]
7. On the Colloidal Stability of PbS Quantum Dots Capped with Methylammonium Lead Iodide Ligands. Bederak D; Sukharevska N; Kahmann S; Abdu-Aguye M; Duim H; Dirin DN; Kovalenko MV; Portale G; Loi MA ACS Appl Mater Interfaces; 2020 Nov; 12(47):52959-52966. PubMed ID: 33174723 [TBL] [Abstract][Full Text] [Related]
8. Size dependence in tunneling spectra of PbSe quantum-dot arrays. Ou YC; Cheng SF; Jian WB Nanotechnology; 2009 Jul; 20(28):285401. PubMed ID: 19546498 [TBL] [Abstract][Full Text] [Related]
9. Counterion-Mediated Ligand Exchange for PbS Colloidal Quantum Dot Superlattices. Balazs DM; Dirin DN; Fang HH; Protesescu L; ten Brink GH; Kooi BJ; Kovalenko MV; Loi MA ACS Nano; 2015 Dec; 9(12):11951-9. PubMed ID: 26512884 [TBL] [Abstract][Full Text] [Related]
10. Effect of magnetic field on Mott's variable-range hopping parameters in multiwall carbon nanotube mat. Arya VP; Prasad V; Kumar PS J Phys Condens Matter; 2012 Jun; 24(24):245602. PubMed ID: 22627115 [TBL] [Abstract][Full Text] [Related]
11. Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. Jo JW; Choi J; García de Arquer FP; Seifitokaldani A; Sun B; Kim Y; Ahn H; Fan J; Quintero-Bermudez R; Kim J; Choi MJ; Baek SW; Proppe AH; Walters G; Nam DH; Kelley S; Hoogland S; Voznyy O; Sargent EH Nano Lett; 2018 Jul; 18(7):4417-4423. PubMed ID: 29912564 [TBL] [Abstract][Full Text] [Related]
12. Coulomb blockade and hopping conduction in PbSe quantum dots. Romero HE; Drndic M Phys Rev Lett; 2005 Oct; 95(15):156801. PubMed ID: 16241748 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots. Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092 [TBL] [Abstract][Full Text] [Related]
14. Electrical Transport in Colloidal Quantum Dot Films. Guyot-Sionnest P J Phys Chem Lett; 2012 May; 3(9):1169-75. PubMed ID: 26288053 [TBL] [Abstract][Full Text] [Related]
15. Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. Proppe AH; Xu J; Sabatini RP; Fan JZ; Sun B; Hoogland S; Kelley SO; Voznyy O; Sargent EH Nano Lett; 2018 Nov; 18(11):7052-7059. PubMed ID: 30359524 [TBL] [Abstract][Full Text] [Related]
16. Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. Sayevich V; Guhrenz C; Dzhagan VM; Sin M; Werheid M; Cai B; Borchardt L; Widmer J; Zahn DR; Brunner E; Lesnyak V; Gaponik N; Eychmüller A ACS Nano; 2017 Feb; 11(2):1559-1571. PubMed ID: 28052188 [TBL] [Abstract][Full Text] [Related]
17. Charge Carrier Conduction Mechanism in PbS Quantum Dot Solar Cells: Electrochemical Impedance Spectroscopy Study. Wang H; Wang Y; He B; Li W; Sulaman M; Xu J; Yang S; Tang Y; Zou B ACS Appl Mater Interfaces; 2016 Jul; 8(28):18526-33. PubMed ID: 27176547 [TBL] [Abstract][Full Text] [Related]