These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 26045063)
1. Identification association of drug-disease by using functional gene module for breast cancer. Zhu L; Zhu F BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S3. PubMed ID: 26045063 [TBL] [Abstract][Full Text] [Related]
2. Integration of a prognostic gene module with a drug sensitivity module to identify drugs that could be repurposed for breast cancer therapy. Zhu L; Liu J Comput Biol Med; 2015 Jun; 61():163-71. PubMed ID: 25596797 [TBL] [Abstract][Full Text] [Related]
3. Revealing targeted therapy for human cancer by gene module maps. Wong DJ; Nuyten DS; Regev A; Lin M; Adler AS; Segal E; van de Vijver MJ; Chang HY Cancer Res; 2008 Jan; 68(2):369-78. PubMed ID: 18199530 [TBL] [Abstract][Full Text] [Related]
4. Utilizing Cancer - Functional Gene Set - Compound Networks to Identify Putative Drugs for Breast Cancer. Hsiao TH; Chiu YC; Chen YH; Hsu YC; Chen HH; Chuang EY; Chen Y Comb Chem High Throughput Screen; 2018; 21(2):74-83. PubMed ID: 29303076 [TBL] [Abstract][Full Text] [Related]
5. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer. Liu R; Lv QL; Yu J; Hu L; Zhang LH; Cheng Y; Zhou HH Breast Cancer Res Treat; 2015 Jun; 151(3):607-18. PubMed ID: 25981901 [TBL] [Abstract][Full Text] [Related]
6. From linear 'dogma' and trastuzumab-emtansine to future transcriptional circuitry-based drug discovery for breast cancer. Lianos GD; Roukos DH Future Oncol; 2014 Feb; 10(2):145-8. PubMed ID: 24490597 [No Abstract] [Full Text] [Related]
7. Denoising perturbation signatures reveal an actionable AKT-signaling gene module underlying a poor clinical outcome in endocrine-treated ER+ breast cancer. Teschendorff AE; Li L; Yang Z Genome Biol; 2015 Apr; 16(1):61. PubMed ID: 25886003 [TBL] [Abstract][Full Text] [Related]
8. Gene expression signatures, clinicopathological features, and individualized therapy in breast cancer. Acharya CR; Hsu DS; Anders CK; Anguiano A; Salter KH; Walters KS; Redman RC; Tuchman SA; Moylan CA; Mukherjee S; Barry WT; Dressman HK; Ginsburg GS; Marcom KP; Garman KS; Lyman GH; Nevins JR; Potti A JAMA; 2008 Apr; 299(13):1574-87. PubMed ID: 18387932 [TBL] [Abstract][Full Text] [Related]
9. Breast cancer gene microarrays pass muster. Twombly R J Natl Cancer Inst; 2006 Oct; 98(20):1438-40. PubMed ID: 17047189 [No Abstract] [Full Text] [Related]
10. Pharmacogenetics of breast cancer: toward the individualization of therapy. Chang JC; Hilsenbeck SG; Fuqua SA Cancer Invest; 2009 Aug; 27(7):699-703. PubMed ID: 19637041 [No Abstract] [Full Text] [Related]
11. A computational method for clinically relevant cancer stratification and driver mutation module discovery using personal genomics profiles. Wang L; Li F; Sheng J; Wong ST BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S6. PubMed ID: 26099165 [TBL] [Abstract][Full Text] [Related]
12. Discovering gene re-ranking efficiency and conserved gene-gene relationships derived from gene co-expression network analysis on breast cancer data. Bourdakou MM; Athanasiadis EI; Spyrou GM Sci Rep; 2016 Feb; 6():20518. PubMed ID: 26892392 [TBL] [Abstract][Full Text] [Related]
13. Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines. Liu W; Li L; Li W Int J Cancer; 2014 Dec; 135(12):2795-803. PubMed ID: 24771271 [TBL] [Abstract][Full Text] [Related]
14. Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network. Yang X; Jia M; Li Z; Lu S; Qi X; Zhao B; Wang X; Rong Y; Shi J; Zhang Z; Xu W; Gao Y; Zhang S; Yu G J Cancer Res Ther; 2014; 10(4):1013-8. PubMed ID: 25579546 [TBL] [Abstract][Full Text] [Related]
15. Integrated gene expression profile predicts prognosis of breast cancer patients. Li LF; Xu XJ; Zhao Y; Liu ZB; Shen ZZ; Jin WR; Shao ZM Breast Cancer Res Treat; 2009 Jan; 113(2):231-7. PubMed ID: 18278552 [TBL] [Abstract][Full Text] [Related]
16. Post-treatment tumor gene expression signatures are more predictive of treatment outcomes than baseline signatures in breast cancer. Lee SC; Xu X; Chng WJ; Watson M; Lim YW; Wong CI; Iau P; Sukri N; Lim SE; Yap HL; Buhari SA; Tan P; Guo J; Chuah B; McLeod HL; Goh BC Pharmacogenet Genomics; 2009 Nov; 19(11):833-42. PubMed ID: 19809382 [TBL] [Abstract][Full Text] [Related]
17. Core module biomarker identification with network exploration for breast cancer metastasis. Yang R; Daigle BJ; Petzold LR; Doyle FJ BMC Bioinformatics; 2012 Jan; 13():12. PubMed ID: 22257533 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Vilquin P; Donini CF; Villedieu M; Grisard E; Corbo L; Bachelot T; Vendrell JA; Cohen PA Breast Cancer Res; 2015 Jan; 17(1):13. PubMed ID: 25633049 [TBL] [Abstract][Full Text] [Related]
19. [Construction and analysis of a breast cancer gene-drug network model]. Wei X; Hu DH; Yi MH; Chang XL; Zhu WJ; Qu SL; Deng DY Nan Fang Yi Ke Da Xue Xue Bao; 2016 Feb; 36(2):170-9. PubMed ID: 26922011 [TBL] [Abstract][Full Text] [Related]
20. Microarray-based gene expression profiling as a clinical tool for breast cancer management: are we there yet? Correa Geyer F; Reis-Filho JS Int J Surg Pathol; 2009 Aug; 17(4):285-302. PubMed ID: 19103611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]