BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 26045147)

  • 1. Drug-polymer interactions at water-crystal interfaces and implications for crystallization inhibition: molecular dynamics simulations of amphiphilic block copolymer interactions with tolazamide crystals.
    Gao Y; Olsen KW
    J Pharm Sci; 2015 Jul; 104(7):2132-41. PubMed ID: 26045147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding and Release between Polymeric Carrier and Protein Drug: pH-Mediated Interplay of Coulomb Forces, Hydrogen Bonding, van der Waals Interactions, and Entropy.
    De Luca S; Chen F; Seal P; Stenzel MH; Smith SC
    Biomacromolecules; 2017 Nov; 18(11):3665-3677. PubMed ID: 28880549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug loading in PLA-PEG nanoparticles.
    Meunier M; Goupil A; Lienard P
    Int J Pharm; 2017 Jun; 526(1-2):157-166. PubMed ID: 28438697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs.
    Kim JY; Kim S; Pinal R; Park K
    J Control Release; 2011 May; 152(1):13-20. PubMed ID: 21352878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen.
    Wen H; Morris KR; Park K
    J Colloid Interface Sci; 2005 Oct; 290(2):325-35. PubMed ID: 16153902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.
    Moroishi H; Yoshida C; Murakami Y
    Colloids Surf B Biointerfaces; 2013 Feb; 102():597-603. PubMed ID: 23107939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of polymer-assisting supersaturation of poorly water-soluble loratadine based on experimental observations and molecular dynamic simulations.
    Zhang S; Sun M; Zhao Y; Song X; He Z; Wang J; Sun J
    Drug Deliv Transl Res; 2017 Oct; 7(5):738-749. PubMed ID: 28677032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics.
    Srinivas G; Discher DE; Klein ML
    Nat Mater; 2004 Sep; 3(9):638-44. PubMed ID: 15300242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ formation of biodegradable hydrogels by stereocomplexation of PEG-(PLLA)8 and PEG-(PDLA)8 star block copolymers.
    Hiemstra C; Zhong Z; Li L; Dijkstra PJ; Feijen J
    Biomacromolecules; 2006 Oct; 7(10):2790-5. PubMed ID: 17025354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A coarse-grain MD (molecular dynamic) simulation of PCL-PEG and PLA-PEG aggregation as a computational model for prediction of the drug-loading efficacy of doxorubicin.
    Kamrani SME; Hadizadeh F
    J Biomol Struct Dyn; 2019 Oct; 37(16):4215-4221. PubMed ID: 30628852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-atom molecular dynamics study of a spherical micelle composed of N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) block copolymers: a potential carrier of drug delivery systems for cancer.
    Kuramochi H; Andoh Y; Yoshii N; Okazaki S
    J Phys Chem B; 2009 Nov; 113(46):15181-8. PubMed ID: 19856949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery.
    Jelonek K; Li S; Wu X; Kasperczyk J; Marcinkowski A
    Int J Pharm; 2015 May; 485(1-2):357-64. PubMed ID: 25796125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example.
    Velluto D; Demurtas D; Hubbell JA
    Mol Pharm; 2008; 5(4):632-42. PubMed ID: 18547055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Polymer Enrichment at the Crystal-Liquid Interface on Crystallization Kinetics of Amorphous Solid Dispersions.
    Zhang J; Shi Q; Tao J; Peng Y; Cai T
    Mol Pharm; 2019 Mar; 16(3):1385-1396. PubMed ID: 30716277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing supersaturated drug-delivery system through mechanism of nucleation and crystal growth inhibition of drugs.
    Joshi P; Sangamwar AT
    Ther Deliv; 2018 Nov; 9(12):873-885. PubMed ID: 30444454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces.
    Jamadagni SN; Godawat R; Garde S
    Langmuir; 2009 Nov; 25(22):13092-9. PubMed ID: 19492828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations.
    Luo Z; Jiang J
    J Control Release; 2012 Aug; 162(1):185-93. PubMed ID: 22743107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supersaturation, nucleation, and crystal growth during single- and biphasic dissolution of amorphous solid dispersions: polymer effects and implications for oral bioavailability enhancement of poorly water soluble drugs.
    Sarode AL; Wang P; Obara S; Worthen DR
    Eur J Pharm Biopharm; 2014 Apr; 86(3):351-60. PubMed ID: 24161655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.