These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26045220)

  • 21. Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.
    Chen QZ; Efthymiou A; Salih V; Boccaccini AR
    J Biomed Mater Res A; 2008 Mar; 84(4):1049-60. PubMed ID: 17685403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall.
    Shoae-Hassani A; Mortazavi-Tabatabaei SA; Sharif S; Seifalian AM; Azimi A; Samadikuchaksaraei A; Verdi J
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1268-76. PubMed ID: 23319462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.
    Zulkifli FH; Jahir Hussain FS; Abdull Rasad MS; Mohd Yusoff M
    J Biomater Appl; 2015 Feb; 29(7):1014-27. PubMed ID: 25186524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering.
    Jia L; Prabhakaran MP; Qin X; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds.
    Bornes TD; Jomha NM; Mulet-Sierra A; Adesida AB
    Stem Cell Res Ther; 2015 Apr; 6(1):84. PubMed ID: 25900045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.
    Guillaume O; Naqvi SM; Lennon K; Buckley CT
    J Biomater Appl; 2015 Apr; 29(9):1230-46. PubMed ID: 25376622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro.
    Renno AC; McDonnell PA; Parizotto NA; Laakso EL
    Photomed Laser Surg; 2007 Aug; 25(4):275-80. PubMed ID: 17803384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations.
    Tierney CM; Jaasma MJ; O'Brien FJ
    J Biomed Mater Res A; 2009 Oct; 91(1):92-101. PubMed ID: 18767061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.
    Fu Q; Rahaman MN; Bal BS; Bonewald LF; Kuroki K; Brown RF
    J Biomed Mater Res A; 2010 Oct; 95(1):172-9. PubMed ID: 20540099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds.
    Haugh MG; Murphy CM; McKiernan RC; Altenbuchner C; O'Brien FJ
    Tissue Eng Part A; 2011 May; 17(9-10):1201-8. PubMed ID: 21155630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli.
    Surrao DC; Fan JC; Waldman SD; Amsden BG
    Acta Biomater; 2012 Oct; 8(10):3704-13. PubMed ID: 22705636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S; Baino F; Cauda V; Crepaldi M; Vitale-Brovarone C; Demarchi D; Onida B
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.
    Zhang Q; Hubenak J; Iyyanki T; Alred E; Turza KC; Davis G; Chang EI; Branch-Brooks CD; Beahm EK; Butler CE
    Biomaterials; 2015 Dec; 73():198-213. PubMed ID: 26410787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory bulb-derived cells seeded on 3D scaffolds exhibit neurotrophic factor expression and pro-angiogenic properties.
    Blumenthal J; Cohen-Matsliah SI; Levenberg S
    Tissue Eng Part A; 2013 Oct; 19(19-20):2284-91. PubMed ID: 23651261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency.
    Moura-Netto C; Ferreira LS; Maranduba CM; Mello-Moura ACV; Marques MM
    Braz Oral Res; 2016 May; 30(1):. PubMed ID: 27253140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and characterization of bioactive collagen/wollastonite composite scaffolds.
    Li X; Chang J
    J Mater Sci Mater Med; 2005 Apr; 16(4):361-5. PubMed ID: 15803282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity.
    Zhang Q; Lv S; Lu J; Jiang S; Lin L
    Int J Biol Macromol; 2015 May; 76():94-101. PubMed ID: 25709022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds.
    Day RM; Boccaccini AR; Shurey S; Roether JA; Forbes A; Hench LL; Gabe SM
    Biomaterials; 2004 Dec; 25(27):5857-66. PubMed ID: 15172498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.
    Muzio G; Martinasso G; Baino F; Frairia R; Vitale-Brovarone C; Canuto RA
    J Biomater Appl; 2014 Nov; 29(5):728-36. PubMed ID: 24994880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.