These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 26045469)

  • 1. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.
    Niu LL; Zhang Y; Shu X; Jin S; Zhou HB; Gao F; Lu GH
    J Phys Condens Matter; 2015 Jul; 27(25):255007. PubMed ID: 26045469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of point defects on grain boundary mobility in bcc tungsten.
    Borovikov V; Tang XZ; Perez D; Bai XM; Uberuaga BP; Voter AF
    J Phys Condens Matter; 2013 Jan; 25(3):035402. PubMed ID: 23238084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of vacancy segregation to [100] symmetric tilt grain boundaries in bcc tungsten.
    Chen N; Niu LL; Zhang Y; Shu X; Zhou HB; Jin S; Ran G; Lu GH; Gao F
    Sci Rep; 2016 Nov; 6():36955. PubMed ID: 27874047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of He bubble nucleation at grain boundaries.
    Zhang Y; Millett PC; Tonks M; Zhang L; Biner B
    J Phys Condens Matter; 2012 Aug; 24(30):305005. PubMed ID: 22722319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and stability of He and He-vacancy clusters at a Σ5(310)/[001] grain boundary in bcc Fe from first-principles.
    Zhang L; Zhang Y; Lu GH
    J Phys Condens Matter; 2013 Mar; 25(9):095001. PubMed ID: 23306176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten.
    Wang LF; Shu X; Lu GH; Gao F
    J Phys Condens Matter; 2017 Nov; 29(43):435401. PubMed ID: 28816179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary.
    Dawson JA; Chen H; Tanaka I
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional fast migration of vacancy clusters in metals.
    Matsukawa Y; Zinkle SJ
    Science; 2007 Nov; 318(5852):959-62. PubMed ID: 17991860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy.
    Amino T; Arakawa K; Mori H
    Sci Rep; 2016 May; 6():26099. PubMed ID: 27185352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient annealing of radiation damage near grain boundaries via interstitial emission.
    Bai XM; Voter AF; Hoagland RG; Nastasi M; Uberuaga BP
    Science; 2010 Mar; 327(5973):1631-4. PubMed ID: 20339070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vacancy creation and annihilation on grain boundary motion.
    McFadden GB; Boettinger WJ; Mishin Y
    Acta Mater; 2020; 185():. PubMed ID: 33281492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creeping motion of self interstitial atom clusters in tungsten.
    Zhou WH; Zhang CG; Li YG; Zeng Z
    Sci Rep; 2014 May; 4():5096. PubMed ID: 24865470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point defect-grain boundary interactions in MgO: an atomistic study.
    Uberuaga BP; Bai XM; Dholabhai PP; Moore N; Duffy DM
    J Phys Condens Matter; 2013 Sep; 25(35):355001. PubMed ID: 23860398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic and kinetic dataset on interaction of the vacancy and self-interstitial atom with the grain boundary in α-iron.
    Li X; Liu W; Xu Y; Liu CS; Pan BC; Liang Y; Fang QF; Chen JL; Luo GN; Lu GH; Wang Z
    Data Brief; 2016 Jun; 7():798-813. PubMed ID: 27077081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in rutile and anatase polymorphs of TiO2: kinetics and thermodynamics near grain boundaries.
    Uberuaga BP; Bai XM
    J Phys Condens Matter; 2011 Nov; 23(43):435004. PubMed ID: 21960062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study.
    Fotopoulos V; Mora-Fonz D; Kleinbichler M; Bodlos R; Kozeschnik E; Romaner L; Shluger AL
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Vacancies on Grain Boundary Segregation in Ferromagnetic
    Mazalová M; Všianská M; Pavlů J; Šob M
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32268587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aberration-corrected Z-contrast imaging of SrTiO3 dislocation cores.
    Klie RF; Walkosz W; Yang G; Zhao Y
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):185-91. PubMed ID: 19074689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of oxygen vacancy diffusion in SrTiO3.
    Schie M; Marchewka A; Müller T; De Souza RA; Waser R
    J Phys Condens Matter; 2012 Dec; 24(48):485002. PubMed ID: 23086341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-healing properties of nanocrystalline materials: a first-principles analysis of the role of grain boundaries.
    Xu J; Liu JB; Li SN; Liu BX; Jiang Y
    Phys Chem Chem Phys; 2016 Jul; 18(27):17930-40. PubMed ID: 27326789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.