These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 26045539)

  • 1. Development of a Model System for Tick-Borne Flavivirus Persistence in HEK 293T Cells.
    Mlera L; Offerdahl DK; Martens C; Porcella SF; Melik W; Bloom ME
    mBio; 2015 Jun; 6(3):e00614. PubMed ID: 26045539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis Reveals a Signature Profile for Tick-Borne Flavivirus Persistence in HEK 293T Cells.
    Mlera L; Lam J; Offerdahl DK; Martens C; Sturdevant D; Turner CV; Porcella SF; Bloom ME
    mBio; 2016 May; 7(3):. PubMed ID: 27222466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Langat Virus Genome in Persistent Infection of an Ixodes scapularis Cell Line.
    Mlera L; Melik W; Offerdahl DK; Dahlstrom E; Porcella SF; Bloom ME
    Viruses; 2016 Sep; 8(9):. PubMed ID: 27626437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tick-Borne Flaviviruses Depress AKT Activity during Acute Infection by Modulating AKT1/2.
    Kirsch JM; Mlera L; Offerdahl DK; VanSickle M; Bloom ME
    Viruses; 2020 Sep; 12(10):. PubMed ID: 32977414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavivirus Infection of
    Grabowski JM; Tsetsarkin KA; Long D; Scott DP; Rosenke R; Schwan TG; Mlera L; Offerdahl DK; Pletnev AG; Bloom ME
    mBio; 2017 Aug; 8(4):. PubMed ID: 28830948
    [No Abstract]   [Full Text] [Related]  

  • 6. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells.
    Zhou W; Woodson M; Neupane B; Bai F; Sherman MB; Choi KH; Neelakanta G; Sultana H
    PLoS Pathog; 2018 Jan; 14(1):e1006764. PubMed ID: 29300779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi reveals proteins for metabolism and protein processing associated with Langat virus infection in Ixodes scapularis (black-legged tick) ISE6 cells.
    Grabowski JM; Gulia-Nuss M; Kuhn RJ; Hill CA
    Parasit Vectors; 2017 Jan; 10(1):24. PubMed ID: 28086865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner.
    Breitkopf VJM; Dobler G; Claus P; Naim HY; Steffen I
    Viruses; 2021 Oct; 13(11):. PubMed ID: 34834970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNA-based control of tick-borne flavivirus neuropathogenesis: Challenges and perspectives.
    Teterina NL; Maximova OA; Kenney H; Liu G; Pletnev AG
    Antiviral Res; 2016 Mar; 127():57-67. PubMed ID: 26794396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the Proteome of Langat-Infected Ixodes scapularis ISE6 Cells: Metabolic Pathways Associated with Flavivirus Infection.
    Grabowski JM; Perera R; Roumani AM; Hedrick VE; Inerowicz HD; Hill CA; Kuhn RJ
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004180. PubMed ID: 26859745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tick-borne flavivirus infection in Ixodes scapularis larvae: development of a novel method for synchronous viral infection of ticks.
    Mitzel DN; Wolfinbarger JB; Long RD; Masnick M; Best SM; Bloom ME
    Virology; 2007 Sep; 365(2):410-8. PubMed ID: 17490700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kissing-loop interaction between 5' and 3' ends of tick-borne Langat virus genome 'bridges the gap' between mosquito- and tick-borne flaviviruses in mechanisms of viral RNA cyclization: applications for virus attenuation and vaccine development.
    Tsetsarkin KA; Liu G; Shen K; Pletnev AG
    Nucleic Acids Res; 2016 Apr; 44(7):3330-50. PubMed ID: 26850640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breast milk transmission and involvement of mammary glands in tick-borne flavivirus infected mice.
    Miao Y; Zheng Y; Wang T; Yi W; Zhang N; Zhang W; Zheng Z
    J Virol; 2024 Mar; 98(3):e0170923. PubMed ID: 38305156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PERK-Mediated Unfolded Protein Response Signaling Restricts Replication of the Tick-Borne Flavivirus Langat Virus.
    Lewy TG; Offerdahl DK; Grabowski JM; Kellman E; Mlera L; Chiramel A; Bloom ME
    Viruses; 2020 Mar; 12(3):. PubMed ID: 32197325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist.
    Best SM; Morris KL; Shannon JG; Robertson SJ; Mitzel DN; Park GS; Boer E; Wolfinbarger JB; Bloom ME
    J Virol; 2005 Oct; 79(20):12828-39. PubMed ID: 16188985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steps of the tick-borne encephalitis virus replication cycle that affect neuropathogenesis.
    Mandl CW
    Virus Res; 2005 Aug; 111(2):161-74. PubMed ID: 15871909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SiRNA inhibits replication of Langat virus, a member of the tick-borne encephalitis virus complex in organotypic rat brain slices.
    Maffioli C; Grandgirard D; Leib SL; Engler O
    PLoS One; 2012; 7(9):e44703. PubMed ID: 22984545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Peroxiredoxin From the
    Kusakisako K; Morokuma H; Talactac MR; Hernandez EP; Yoshii K; Tanaka T
    Front Cell Infect Microbiol; 2020; 10():7. PubMed ID: 32047725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of a novel tick-borne flavivirus and its serological surveillance.
    Shimoda H; Hayasaka D; Yoshii K; Yokoyama M; Suzuki K; Kodera Y; Takeda T; Mizuno J; Noguchi K; Yonemitsu K; Minami S; Kuwata R; Takano A; Maeda K
    Ticks Tick Borne Dis; 2019 Jun; 10(4):742-748. PubMed ID: 30902589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-reactive antibodies against Langat virus protect mice from lethal tick-borne encephalitis virus infection.
    Kubinski M; Beicht J; Zdora I; Saletti G; Kircher M; Petry-Gusmag M; Steffen I; Puff C; Jung K; Baumgärtner W; Rimmelzwaan GF; Osterhaus ADME; Prajeeth CK
    Front Immunol; 2023; 14():1134371. PubMed ID: 36926332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.