BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26045627)

  • 1. Nonlinear photoacoustic spectroscopy of hemoglobin.
    Danielli A; Maslov K; Favazza CP; Xia J; Wang LV
    Appl Phys Lett; 2015 May; 106(20):203701. PubMed ID: 26045627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.
    Rajian JR; Carson PL; Wang X
    Opt Express; 2009 Mar; 17(6):4879-89. PubMed ID: 19293919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements.
    Orfanakis M; Tserevelakis GJ; Zacharakis G
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.
    Dovlo E; Lashkari B; Soo Sean Choi S; Mandelis A; Shi W; Liu FF
    J Biophotonics; 2017 Sep; 10(9):1134-1142. PubMed ID: 27758051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics.
    Hussain A; Petersen W; Staley J; Hondebrink E; Steenbergen W
    Opt Lett; 2016 Apr; 41(8):1720-3. PubMed ID: 27082328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical wavelength dependence of photoacoustic signal of gold nanofluid.
    Gandolfi M; Banfi F; Glorieux C
    Photoacoustics; 2020 Dec; 20():100199. PubMed ID: 32874914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro photoacoustic spectroscopy of pulsatile blood flow: Probing the interrelationship between red blood cell aggregation and oxygen saturation.
    Bok TH; Hysi E; Kolios MC
    J Biophotonics; 2018 Aug; 11(8):e201700300. PubMed ID: 29431290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-pulse nonlinear photoacoustic technique: a practical investigation.
    Tian C; Xie Z; Fabiilli ML; Liu S; Wang C; Cheng Q; Wang X
    Biomed Opt Express; 2015 Aug; 6(8):2923-33. PubMed ID: 26309756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative evaluation of the impact of variation of optical parameters on the estimation of blood hematocrit and oxygen saturation for dual-wavelength photoacoustics.
    Paul S; Patel HS; Saha RK
    J Opt Soc Am A Opt Image Sci Vis; 2024 Jun; 41(6):1128-1139. PubMed ID: 38856427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single laser pulse generates dual photoacoustic signals for differential contrast photoacoustic imaging.
    Gao F; Feng X; Zhang R; Liu S; Ding R; Kishor R; Zheng Y
    Sci Rep; 2017 Apr; 7(1):626. PubMed ID: 28377616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluence-matching technique using photoacoustic radiofrequency spectra for improving estimates of oxygen saturation.
    Fadhel MN; Hysi E; Assi H; Kolios MC
    Photoacoustics; 2020 Sep; 19():100182. PubMed ID: 32547922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of nanoscale temperature rises on photoacoustic generation: Discrimination between optical absorbers based on thermal nonlinearity at high frequency.
    Simandoux O; Prost A; Gateau J; Bossy E
    Photoacoustics; 2015 Mar; 3(1):20-5. PubMed ID: 25893167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging.
    Zheng S; Lan Z
    Comput Biol Med; 2018 Jun; 97():37-49. PubMed ID: 29689466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography.
    Suhonen M; Pulkkinen A; Tarvainen T
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):527-542. PubMed ID: 38437444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous dual-wavelength photoacoustic radar imaging using waveform engineering with mismatched frequency modulated excitation.
    Lashkari B; Sean Choi SS; Khosroshahi ME; Dovlo E; Mandelis A
    Opt Lett; 2015 Apr; 40(7):1145-8. PubMed ID: 25831278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Wavelength Photoacoustic Visualization of High Intensity Focused Ultrasound Lesions.
    Gray JP; Dana N; Dextraze KL; Maier F; Emelianov S; Bouchard RR
    Ultrason Imaging; 2016 Jan; 38(1):96-112. PubMed ID: 26149314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoacoustic signal-to-noise ratio comparison for pulse and continuous waveforms of very low optical fluence.
    Kang D
    J Biomed Opt; 2022 Jul; 27(7):076006. PubMed ID: 36451701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation.
    Liu C; Liang Y; Wang L
    Biomed Opt Express; 2019 Jun; 10(6):3061-3069. PubMed ID: 31259074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practicality of wavelength selection to improve signal-to-noise ratio in near-infrared spectroscopy.
    Sato H; Kiguchi M; Kawaguchi F; Maki A
    Neuroimage; 2004 Apr; 21(4):1554-62. PubMed ID: 15050579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.