These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26046384)

  • 1. Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting.
    Lee M; Kim JU; Lee KJ; Ahn S; Shin YB; Shin J; Park CB
    ACS Nano; 2015 Jun; 9(6):6206-13. PubMed ID: 26046384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-inspired plasmonic nanohybrids for light harvesting.
    Lee M; Kim JU; Lee JS; Lee BI; Shin J; Park CB
    Adv Mater; 2014 Jul; 26(26):4463-8. PubMed ID: 24623446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-driven plasmonic heterostructure Ti/TiO
    Cheng C; Akram MN; Nilsen O; Pryds N; Wang K
    Phys Chem Chem Phys; 2020 Apr; 22(15):7769-7777. PubMed ID: 32236207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting.
    Bai Y; Butburee T; Yu H; Li Z; Amal R; Lu GQ; Wang L
    J Colloid Interface Sci; 2015 Jul; 449():246-51. PubMed ID: 25498878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic harvesting of light energy for Suzuki coupling reactions.
    Wang F; Li C; Chen H; Jiang R; Sun LD; Li Q; Wang J; Yu JC; Yan CH
    J Am Chem Soc; 2013 Apr; 135(15):5588-601. PubMed ID: 23521598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications.
    Kochuveedu ST; Jang YH; Kim DH
    Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling Surface Plasmon Decay in Core-Shell Nanostructures toward Broadband Light-Driven Catalytic Organic Synthesis.
    Huang H; Zhang L; Lv Z; Long R; Zhang C; Lin Y; Wei K; Wang C; Chen L; Li ZY; Zhang Q; Luo Y; Xiong Y
    J Am Chem Soc; 2016 Jun; 138(21):6822-8. PubMed ID: 27175744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions.
    Cushing SK; Bristow AD; Wu N
    Phys Chem Chem Phys; 2015 Nov; 17(44):30013-22. PubMed ID: 26497739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aluminum for plasmonics.
    Knight MW; King NS; Liu L; Everitt HO; Nordlander P; Halas NJ
    ACS Nano; 2014 Jan; 8(1):834-40. PubMed ID: 24274662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering and monitoring plasmon-enhanced reactions by optical nanoantennas coupled to photocatalytic beads.
    Salmistraro M; Schwartzberg A; Bao W; Depero LE; Weber-Bargioni A; Cabrini S; Alessandri I
    Small; 2013 Oct; 9(19):3301-7. PubMed ID: 23606587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.
    Robatjazi H; Zhao H; Swearer DF; Hogan NJ; Zhou L; Alabastri A; McClain MJ; Nordlander P; Halas NJ
    Nat Commun; 2017 Jun; 8(1):27. PubMed ID: 28638073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sideways scattering in double resonant plasmonic nanostructures for light harvesting applications.
    Achermann M
    Opt Express; 2016 Dec; 24(26):30234-30244. PubMed ID: 28059299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic core-shell nanostructure as an optical photoactive nanolens for enhanced light harvesting and hydrogen production.
    Gesesse GD; Le Neel T; Cui Z; Bachelier G; Remita H; Colbeau-Justin C; Ghazzal MN
    Nanoscale; 2018 Nov; 10(43):20140-20146. PubMed ID: 30379178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Enhancement of Dye Sensitized Solar Cells in the Red-to-near-Infrared Region using Triangular Core-Shell Ag@SiO2 Nanoparticles.
    Gangishetty MK; Lee KE; Scott RW; Kelly TL
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11044-51. PubMed ID: 24102234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum plasmonic photocatalysis.
    Hao Q; Wang C; Huang H; Li W; Du D; Han D; Qiu T; Chu PK
    Sci Rep; 2015 Oct; 5():15288. PubMed ID: 26497411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells.
    Xu Q; Liu F; Liu Y; Meng W; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2014 Mar; 22 Suppl 2():A301-10. PubMed ID: 24922239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aluminum plasmonic nanoparticles enhanced dye sensitized solar cells.
    Xu Q; Liu F; Liu Y; Meng W; Cui K; Feng X; Zhang W; Huang Y
    Opt Express; 2014 Mar; 22(5):A301-10. PubMed ID: 24800286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.