BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 26046403)

  • 1. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.
    Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA
    Med Image Anal; 2015 Aug; 24(1):18-27. PubMed ID: 26046403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Abdominal Segmentation on Clinically Acquired CT with SIMPLE Context Learning.
    Xu Z; Burke RP; Lee CP; Baucom RB; Poulose BK; Abramson RG; Landman BA
    Proc SPIE Int Soc Opt Eng; 2015 Mar; 9413():. PubMed ID: 25914506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SIMPLE is a good idea (and better with context learning).
    Xu Z; Asman AJ; Shanahan PL; Abramson RG; Landman BA
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):364-71. PubMed ID: 25333139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.
    Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection.
    Zhuang X; Bai W; Song J; Zhan S; Qian X; Shi W; Lian Y; Rueckert D
    Med Phys; 2015 Jul; 42(7):3822-33. PubMed ID: 26133584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MASCG: Multi-Atlas Segmentation Constrained Graph method for accurate segmentation of hip CT images.
    Chu C; Bai J; Wu X; Zheng G
    Med Image Anal; 2015 Dec; 26(1):173-84. PubMed ID: 26426453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):275-82. PubMed ID: 24505771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-organ segmentation with missing organs in abdominal CT images.
    Suzuki M; Linguraru MG; Okada K
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):418-25. PubMed ID: 23286158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images.
    Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-organ abdominal CT segmentation using hierarchically weighted subject-specific atlases.
    Wolz R; Chu C; Misawa K; Mori K; Rueckert D
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):10-7. PubMed ID: 23285529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Registration of free-breathing 3D+t abdominal perfusion CT images via co-segmentation.
    Prevost R; Romain B; Cuingnet R; Mory B; Rouet L; Lucidarme O; Cohen LD; Ardon R
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):99-107. PubMed ID: 24579129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atlas-based auto-segmentation of head and neck CT images.
    Han X; Hoogeman MS; Levendag PC; Hibbard LS; Teguh DN; Voet P; Cowen AC; Wolf TK
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):434-41. PubMed ID: 18982634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminative dictionary learning for abdominal multi-organ segmentation.
    Tong T; Wolz R; Wang Z; Gao Q; Misawa K; Fujiwara M; Mori K; Hajnal JV; Rueckert D
    Med Image Anal; 2015 Jul; 23(1):92-104. PubMed ID: 25988490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.
    Linguraru MG; Pura JA; Chowdhury AS; Summers RM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):89-96. PubMed ID: 20879387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT.
    Linguraru MG; Pura JA; Pamulapati V; Summers RM
    Med Image Anal; 2012 May; 16(4):904-14. PubMed ID: 22377657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.