These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 26046661)
1. Enhancing bottom-up and top-down proteomic measurements with ion mobility separations. Baker ES; Burnum-Johnson KE; Ibrahim YM; Orton DJ; Monroe ME; Kelly RT; Moore RJ; Zhang X; Théberge R; Costello CE; Smith RD Proteomics; 2015 Aug; 15(16):2766-76. PubMed ID: 26046661 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional ion mobility analyses of proteins and peptides. Shvartsburg AA; Tang K; Smith RD Methods Mol Biol; 2009; 492():417-45. PubMed ID: 19241049 [TBL] [Abstract][Full Text] [Related]
3. Application of the ETD/PTR reactions in top-down proteomics as a faster alternative to bottom-up nanoLC-MS/MS protein identification. Drabik A; Bodzon-Kulakowska A; Suder P J Mass Spectrom; 2012 Oct; 47(10):1347-52. PubMed ID: 23019167 [TBL] [Abstract][Full Text] [Related]
4. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
5. Use of monolithic supports for high-throughput protein and peptide separation in proteomics. Andjelković U; Tufegdžić S; Popović M Electrophoresis; 2017 Nov; 38(22-23):2851-2869. PubMed ID: 28906564 [TBL] [Abstract][Full Text] [Related]
7. Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics. Shen Y; Zhang R; Moore RJ; Kim J; Metz TO; Hixson KK; Zhao R; Livesay EA; Udseth HR; Smith RD Anal Chem; 2005 May; 77(10):3090-100. PubMed ID: 15889897 [TBL] [Abstract][Full Text] [Related]
8. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry. Luo Q; Tang K; Yang F; Elias A; Shen Y; Moore RJ; Zhao R; Hixson KK; Rossie SS; Smith RD J Proteome Res; 2006 May; 5(5):1091-7. PubMed ID: 16674098 [TBL] [Abstract][Full Text] [Related]
9. Predicting peptide retention times for proteomics. Krokhin OV; Spicer V Curr Protoc Bioinformatics; 2010 Sep; Chapter 13():Unit 13.14. PubMed ID: 20836075 [TBL] [Abstract][Full Text] [Related]
10. The Future of Proteomics is Up in the Air: Can Ion Mobility Replace Liquid Chromatography for High Throughput Proteomics? Jiang Y; DeBord D; Vitrac H; Stewart J; Haghani A; Van Eyk JE; Fert-Bober J; Meyer JG J Proteome Res; 2024 Jun; 23(6):1871-1882. PubMed ID: 38713528 [TBL] [Abstract][Full Text] [Related]
11. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Swearingen KE; Moritz RL Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268 [TBL] [Abstract][Full Text] [Related]
12. Nanoflow LC/IMS-MS and LC/IMS-CID/MS of protein mixtures. Sowell RA; Koeniger SL; Valentine SJ; Moon MH; Clemmer DE J Am Soc Mass Spectrom; 2004 Sep; 15(9):1341-53. PubMed ID: 15337515 [TBL] [Abstract][Full Text] [Related]
13. Pressurized pepsin digestion in proteomics: an automatable alternative to trypsin for integrated top-down bottom-up proteomics. López-Ferrer D; Petritis K; Robinson EW; Hixson KK; Tian Z; Lee JH; Lee SW; Tolić N; Weitz KK; Belov ME; Smith RD; Pasa-Tolić L Mol Cell Proteomics; 2011 Feb; 10(2):M110.001479. PubMed ID: 20627868 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Burnum-Johnson KE; Nie S; Casey CP; Monroe ME; Orton DJ; Ibrahim YM; Gritsenko MA; Clauss TR; Shukla AK; Moore RJ; Purvine SO; Shi T; Qian W; Liu T; Baker ES; Smith RD Mol Cell Proteomics; 2016 Dec; 15(12):3694-3705. PubMed ID: 27670688 [TBL] [Abstract][Full Text] [Related]
15. Comparative studies of peak intensities and chromatographic separation of proteolytic digests, PTMs, and intact proteins obtained by nanoLC-ESI MS analysis at room and elevated temperatures. Moskovets EV; Ivanov AR Anal Bioanal Chem; 2016 Jun; 408(15):3953-68. PubMed ID: 26898204 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS). Bonneil E; Pfammatter S; Thibault P J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763 [TBL] [Abstract][Full Text] [Related]
17. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. Causon TJ; Hann S J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446 [TBL] [Abstract][Full Text] [Related]
18. An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies. Baker ES; Livesay EA; Orton DJ; Moore RJ; Danielson WF; Prior DC; Ibrahim YM; LaMarche BL; Mayampurath AM; Schepmoes AA; Hopkins DF; Tang K; Smith RD; Belov ME J Proteome Res; 2010 Feb; 9(2):997-1006. PubMed ID: 20000344 [TBL] [Abstract][Full Text] [Related]
19. Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics. Haynes SE; Polasky DA; Dixit SM; Majmudar JD; Neeson K; Ruotolo BT; Martin BR Anal Chem; 2017 Jun; 89(11):5669-5672. PubMed ID: 28471653 [TBL] [Abstract][Full Text] [Related]