These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26047007)

  • 21. Time-to-collision analysis of pedestrian and pedal-cycle accidents for the development of autonomous emergency braking systems.
    Lenard J; Welsh R; Danton R
    Accid Anal Prev; 2018 Jun; 115():128-136. PubMed ID: 29567589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the crash mitigation effect of low-speed automated emergency braking systems based on insurance claims data.
    Isaksson-Hellman I; Lindman M
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():42-7. PubMed ID: 27586101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research of fatal car-to-pedestrian precrash scenarios for the testing of the active safety system in China.
    Tan Z; Che Y; Xiao L; Hu W; Li P; Xu J
    Accid Anal Prev; 2021 Feb; 150():105857. PubMed ID: 33285448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.
    Cicchino JB
    Accid Anal Prev; 2017 Feb; 99(Pt A):142-152. PubMed ID: 27898367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of rear-end crashes involving passenger vehicles with automatic emergency braking.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2019; 20(sup1):S112-S118. PubMed ID: 31381436
    [No Abstract]   [Full Text] [Related]  

  • 26. Analysis of pre-crash characteristics of passenger car to cyclist accidents for the development of advanced drivers assistance systems.
    Char F; Serre T
    Accid Anal Prev; 2020 Mar; 136():105408. PubMed ID: 31927453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.
    Koglbauer I; Holzinger J; Eichberger A; Lex C
    Traffic Inj Prev; 2018 Apr; 19(3):332-337. PubMed ID: 29227692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intersection AEB implementation strategies for left turn across path crashes.
    Sander U; Lubbe N; Pietzsch S
    Traffic Inj Prev; 2019; 20(sup1):S119-S125. PubMed ID: 31381448
    [No Abstract]   [Full Text] [Related]  

  • 29. Quantifying Vision Zero: Crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence.
    Stark L; Düring M; Schoenawa S; Maschke JE; Do CM
    Traffic Inj Prev; 2019; 20(sup1):S126-S132. PubMed ID: 31381430
    [No Abstract]   [Full Text] [Related]  

  • 30. Further development of Motorcycle Autonomous Emergency Braking (MAEB), what can in-depth studies tell us? A multinational study.
    Savino G; Rizzi M; Brown J; Piantini S; Meredith L; Albanese B; Pierini M; Fitzharris M
    Traffic Inj Prev; 2014; 15 Suppl 1():S165-72. PubMed ID: 25307383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting crash-relevant violations at stop sign-controlled intersections for the development of an intersection driver assistance system.
    Scanlon JM; Sherony R; Gabler HC
    Traffic Inj Prev; 2016 Sep; 17 Suppl 1():59-65. PubMed ID: 27586104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on safety of the intended functionality of automobile AEB perception system in typical dangerous scenarios of two-wheelers.
    Zhou H; Li X; He X; Li P; Xiao L; Zhang D
    Accid Anal Prev; 2022 Aug; 173():106709. PubMed ID: 35597224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes.
    Fildes B; Keall M; Bos N; Lie A; Page Y; Pastor C; Pennisi L; Rizzi M; Thomas P; Tingvall C
    Accid Anal Prev; 2015 Aug; 81():24-9. PubMed ID: 25935427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data.
    Mahdinia I; Khattak AJ; Mohsena Haque A
    Accid Anal Prev; 2022 Jun; 171():106669. PubMed ID: 35427907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of automated versus manual emergency braking on rear seat adult and pediatric occupant precrash motion.
    Graci V; Douglas E; Seacrist T; Kerrigan J; Mansfield J; Bolte J; Sherony R; Hallman J; Arbogast KB
    Traffic Inj Prev; 2019; 20(sup1):S106-S111. PubMed ID: 31381438
    [No Abstract]   [Full Text] [Related]  

  • 38. Forward collision warning system impact.
    Hubele N; Kennedy K
    Traffic Inj Prev; 2018; 19(sup2):S78-S83. PubMed ID: 30001148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2017 Mar; 100():97-110. PubMed ID: 28129577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.