These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26047057)

  • 41. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces.
    Kondrashov V; Rühe J
    Langmuir; 2014 Apr; 30(15):4342-50. PubMed ID: 24628022
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.
    Toma M; Loget G; Corn RM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Superhydrophobic micro/nano dual-scale structures.
    Zhang X; Di Q; Zhu F; Sun G; Zhang H
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1539-42. PubMed ID: 23646678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst.
    Lu YT; Barron AR
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11802-14. PubMed ID: 25967127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography.
    Jeong HE; Kwak MK; Park CI; Suh KY
    J Colloid Interface Sci; 2009 Nov; 339(1):202-7. PubMed ID: 19656522
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period.
    Choi JY; Alford TL; Honsberg CB
    Langmuir; 2015 Apr; 31(13):4018-23. PubMed ID: 25781034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching.
    Liu XQ; Yu L; Ma ZC; Chen QD
    Appl Opt; 2017 Mar; 56(8):2157-2161. PubMed ID: 28375300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wrinkled, dual-scale structures of diamond-like carbon (DLC) for superhydrophobicity.
    Rahmawan Y; Moon MW; Kim KS; Lee KR; Suh KY
    Langmuir; 2010 Jan; 26(1):484-91. PubMed ID: 19810723
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Silver hierarchical bowl-like array: synthesis, superhydrophobicity, and optical properties.
    Li Y; Li C; Cho SO; Duan G; Cai W
    Langmuir; 2007 Sep; 23(19):9802-7. PubMed ID: 17705510
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity.
    Du X; Li X; He J
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2365-72. PubMed ID: 20735109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls.
    Lee C; Kim CJ
    Langmuir; 2009 Nov; 25(21):12812-8. PubMed ID: 19610627
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces.
    Liu HH; Zhang HY; Li W
    Langmuir; 2011 May; 27(10):6260-7. PubMed ID: 21495711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Area-selective formation of macropore array by anisotropic electrochemical etching on an n-Si(100) surface in aqueous HF solution.
    Homma T; Sato H; Mori K; Osaka T; Shoji S
    J Phys Chem B; 2005 Mar; 109(12):5724-7. PubMed ID: 16851620
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The fabrication of diversiform nanostructure forests based on residue nanomasks synthesized by oxygen plasma removal of photoresist.
    Mao H; Wu D; Wu W; Xu J; Hao Y
    Nanotechnology; 2009 Nov; 20(44):445304. PubMed ID: 19809108
    [TBL] [Abstract][Full Text] [Related]  

  • 56. General fabrication of ordered nanocone arrays by one-step selective plasma etching.
    Wang Q; Tian Z; Li Y; Tian S; Li Y; Ren S; Gu C; Li J
    Nanotechnology; 2014 Mar; 25(11):115301. PubMed ID: 24556649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.
    Kim WH; Park SJ; Son JY; Kim H
    Nanotechnology; 2008 Jan; 19(4):045302. PubMed ID: 21817499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The residual pattern of double thin-film over-etching for the fabrication of continuous patterns with dimensions varying from 50 nm to millimeters over a large area.
    Chen LQ; Chan-Park MB; Yang C; Zhang Q
    Nanotechnology; 2008 Apr; 19(15):155301. PubMed ID: 21825607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces.
    Chandra D; Yang S
    Acc Chem Res; 2010 Aug; 43(8):1080-91. PubMed ID: 20552977
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical polymer micropillar arrays decorated with ZnO nanowires.
    Ko H; Zhang Z; Takei K; Javey A
    Nanotechnology; 2010 Jul; 21(29):295305. PubMed ID: 20601761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.