BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26047164)

  • 1. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water.
    McDonald KJ; Reynolds B; Reddy KJ
    Sci Rep; 2015 Jun; 5():11110. PubMed ID: 26047164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel arsenic removal process for water using cupric oxide nanoparticles.
    Reddy KJ; McDonald KJ; King H
    J Colloid Interface Sci; 2013 May; 397():96-102. PubMed ID: 23452518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles.
    Martinson CA; Reddy KJ
    J Colloid Interface Sci; 2009 Aug; 336(2):406-11. PubMed ID: 19477461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic removal from natural groundwater using cupric oxide.
    Reddy KJ; Roth TR
    Ground Water; 2013; 51(1):83-91. PubMed ID: 23281686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.
    Wu X; Tan X; Yang S; Wen T; Guo H; Wang X; Xu A
    Water Res; 2013 Aug; 47(12):4159-68. PubMed ID: 23582669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater.
    Shakoor MB; Niazi NK; Bibi I; Shahid M; Sharif F; Bashir S; Shaheen SM; Wang H; Tsang DCW; Ok YS; Rinklebe J
    Sci Total Environ; 2018 Dec; 645():1444-1455. PubMed ID: 30248866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of treated laterite as arsenic adsorbent from different locations and performance of best filter under field conditions.
    Maiti A; Thakur BK; Basu JK; De S
    J Hazard Mater; 2013 Nov; 262():1176-86. PubMed ID: 22785008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead.
    Miller SM; Spaulding ML; Zimmerman JB
    Water Res; 2011 Nov; 45(17):5745-54. PubMed ID: 21924755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zerovalent iron encapsulated chitosan nanospheres - a novel adsorbent for the removal of total inorganic arsenic from aqueous systems.
    Gupta A; Yunus M; Sankararamakrishnan N
    Chemosphere; 2012 Jan; 86(2):150-5. PubMed ID: 22079302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the arsenic removal potential of various biosorbents from water.
    Shakoor MB; Niazi NK; Bibi I; Shahid M; Saqib ZA; Nawaz MF; Shaheen SM; Wang H; Tsang DCW; Bundschuh J; Ok YS; Rinklebe J
    Environ Int; 2019 Feb; 123():567-579. PubMed ID: 30622081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetite interaction with arsenic during sorptive removal from groundwater: a mechanistic study.
    Ajith N; Satpati AK; Debnath AK; Swain KK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(7):715-723. PubMed ID: 37173834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of arsenic from water and its recovery as a highly active photocatalyst.
    Hott RC; Andrade TG; Santos MS; Lima AC; Faria MC; Bomfeti CA; Barbosa F; Maia LF; Oliveira LC; Pereira MC; Rodrigues JL
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21969-21979. PubMed ID: 27539466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cost-effective system for in-situ geological arsenic adsorption from groundwater.
    Shan H; Ma T; Wang Y; Zhao J; Han H; Deng Y; He X; Dong Y
    J Contam Hydrol; 2013 Nov; 154():1-9. PubMed ID: 24035830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature.
    Shipley HJ; Yean S; Kan AT; Tomson MB
    Environ Toxicol Chem; 2009 Mar; 28(3):509-15. PubMed ID: 18939890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of arsenic removal efficiency by an iron oxide-coated sand filter process.
    Callegari A; Ferronato N; Rada EC; Capodaglio AG; Torretta V
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):26135-26143. PubMed ID: 29971744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies.
    Bordoloi S; Nath SK; Gogoi S; Dutta RK
    J Hazard Mater; 2013 Sep; 260():618-26. PubMed ID: 23827730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose.
    Chen W; Chen J; Feng YB; Hong L; Chen QY; Wu LF; Lin XH; Xia XH
    Analyst; 2012 Apr; 137(7):1706-12. PubMed ID: 22349179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of arsenic from groundwater by granular titanium dioxide adsorbent.
    Bang S; Patel M; Lippincott L; Meng X
    Chemosphere; 2005 Jul; 60(3):389-97. PubMed ID: 15924958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.