These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 26047330)
1. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Gunsolus IL; Mousavi MP; Hussein K; Bühlmann P; Haynes CL Environ Sci Technol; 2015 Jul; 49(13):8078-86. PubMed ID: 26047330 [TBL] [Abstract][Full Text] [Related]
2. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen. Zou X; Li P; Lou J; Fu X; Zhang H Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772 [TBL] [Abstract][Full Text] [Related]
3. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid. Li Y; Chen H; Wang F; Zhao F; Han X; Geng H; Gao L; Chen H; Yuan R; Yao J Environ Pollut; 2018 Dec; 243(Pt B):1334-1342. PubMed ID: 30268984 [TBL] [Abstract][Full Text] [Related]
4. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles. Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838 [TBL] [Abstract][Full Text] [Related]
5. Implications of Pony Lake Fulvic Acid for the Aggregation and Dissolution of Oppositely Charged Surface-Coated Silver Nanoparticles and Their Ecotoxicological Effects on Daphnia magna. Jung Y; Metreveli G; Park CB; Baik S; Schaumann GE Environ Sci Technol; 2018 Jan; 52(2):436-445. PubMed ID: 29258302 [TBL] [Abstract][Full Text] [Related]
6. Dynamic silver speciation as studied with fluorous-phase ion-selective electrodes: Effect of natural organic matter on the toxicity and speciation of silver. Mousavi MP; Gunsolus IL; Pérez De Jesús CE; Lancaster M; Hussein K; Haynes CL; Bühlmann P Sci Total Environ; 2015 Dec; 537():453-61. PubMed ID: 26284896 [TBL] [Abstract][Full Text] [Related]
7. Impact of light and Suwanee River Fulvic Acid on O Rong H; Garg S; Waite TD Environ Sci Technol; 2019 Jun; 53(12):6688-6698. PubMed ID: 31090416 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide. Sigg L; Lindauer U Environ Pollut; 2015 Nov; 206():582-7. PubMed ID: 26310977 [TBL] [Abstract][Full Text] [Related]
9. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Pokhrel LR; Dubey B; Scheuerman PR Environ Sci Technol; 2013 Nov; 47(22):12877-85. PubMed ID: 24144348 [TBL] [Abstract][Full Text] [Related]
10. Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Yang X; Jiang C; Hsu-Kim H; Badireddy AR; Dykstra M; Wiesner M; Hinton DE; Meyer JN Environ Sci Technol; 2014 Mar; 48(6):3486-95. PubMed ID: 24568198 [TBL] [Abstract][Full Text] [Related]
11. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
12. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles. Jiang C; Aiken GR; Hsu-Kim H Environ Sci Technol; 2015 Oct; 49(19):11476-84. PubMed ID: 26355264 [TBL] [Abstract][Full Text] [Related]
13. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Stankus DP; Lohse SE; Hutchison JE; Nason JA Environ Sci Technol; 2011 Apr; 45(8):3238-44. PubMed ID: 21162562 [TBL] [Abstract][Full Text] [Related]
14. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Furman O; Usenko S; Lau BL Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221 [TBL] [Abstract][Full Text] [Related]
15. Potential impact of natural organic ligands on the colloidal stability of silver nanoparticles. Afshinnia K; Marrone B; Baalousha M Sci Total Environ; 2018 Jun; 625():1518-1526. PubMed ID: 29996448 [TBL] [Abstract][Full Text] [Related]
16. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Adegboyega NF; Sharma VK; Siskova K; Zbořil R; Sohn M; Schultz BJ; Banerjee S Environ Sci Technol; 2013 Jan; 47(2):757-64. PubMed ID: 23237319 [TBL] [Abstract][Full Text] [Related]
17. Sunlight-driven reduction of silver ion to silver nanoparticle by organic matter mitigates the acute toxicity of silver to Daphnia magna. Zhang Z; Yang X; Shen M; Yin Y; Liu J J Environ Sci (China); 2015 Sep; 35():62-68. PubMed ID: 26354693 [TBL] [Abstract][Full Text] [Related]
18. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Wang H; Ho KT; Scheckel KG; Wu F; Cantwell MG; Katz DR; Horowitz DB; Boothman WS; Burgess RM Environ Sci Technol; 2014 Dec; 48(23):13711-7. PubMed ID: 25369427 [TBL] [Abstract][Full Text] [Related]
19. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+). Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224 [TBL] [Abstract][Full Text] [Related]
20. Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Liu H; Wang X; Wu Y; Hou J; Zhang S; Zhou N; Wang X Environ Pollut; 2019 Mar; 246():414-422. PubMed ID: 30579210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]