BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26047561)

  • 1. Highways in the sky: scales of atmospheric transport of plant pathogens.
    Schmale DG; Ross SD
    Annu Rev Phytopathol; 2015; 53():591-611. PubMed ID: 26047561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.
    Reynolds AM
    Phytopathology; 2012 Nov; 102(11):1026-33. PubMed ID: 23046208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease.
    Brown JK; Hovmøller MS
    Science; 2002 Jul; 297(5581):537-41. PubMed ID: 12142520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lagrangian coherent structures are associated with fluctuations in airborne microbial populations.
    Tallapragada P; Ross SD; Schmale DG
    Chaos; 2011 Sep; 21(3):033122. PubMed ID: 21974657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method for Detecting Atmospheric Lagrangian Coherent Structures Using a Single Fixed-Wing Unmanned Aircraft System.
    Nolan PJ; McClelland HG; Woolsey CA; Ross SD
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic dispersal of plant pathogen spores by jumping-droplet condensation and wind.
    Mukherjee R; Gruszewski HA; Bilyeu LT; Schmale DG; Boreyko JB
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Unmanned Aircraft System (UAS) and Ground-Based Weather Measurements to Predict Lagrangian Coherent Structures (LCSs).
    Nolan PJ; Pinto J; González-Rocha J; Jensen A; Vezzi CN; Bailey SCC; de Boer G; Diehl C; Laurence R; Powers CW; Foroutan H; Ross SD; Schmale DG
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal and diurnal patterns of spore release can significantly affect the proportion of spores expected to undergo long-distance dispersal.
    Savage D; Barbetti MJ; MacLeod WJ; Salam MU; Renton M
    Microb Ecol; 2012 Apr; 63(3):578-85. PubMed ID: 21968611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortex-induced dispersal of a plant pathogen by raindrop impact.
    Kim S; Park H; Gruszewski HA; Schmale DG; Jung S
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4917-4922. PubMed ID: 30804195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment.
    Rieux A; Soubeyrand S; Bonnot F; Klein EK; Ngando JE; Mehl A; Ravigne V; Carlier J; de Lapeyre de Bellaire L
    PLoS One; 2014; 9(8):e103225. PubMed ID: 25116080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mate Finding, Sexual Spore Production, and the Spread of Fungal Plant Parasites.
    Hamelin FM; Castella F; Doli V; Marçais B; Ravigné V; Lewis MA
    Bull Math Biol; 2016 Apr; 78(4):695-712. PubMed ID: 27066983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ebb and Flow of Airborne Pathogens: Monitoring and Use in Disease Management Decisions.
    Mahaffee WF; Stoll R
    Phytopathology; 2016 May; 106(5):420-31. PubMed ID: 27003505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.
    Skelsey P; Rossing WA; Kessel GJ; van der Werf W
    Phytopathology; 2009 Jul; 99(7):887-95. PubMed ID: 19522587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lagrangian coherent structures along atmospheric rivers.
    Garaboa-Paz D; Eiras-Barca J; Huhn F; Pérez-Muñuzuri V
    Chaos; 2015 Jun; 25(6):063105. PubMed ID: 26117099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-change-mediated transport and agglomeration of fungal spores on wheat awns.
    Iliff GJ; Mukherjee R; Gruszewski HA; Schmale Iii DG; Jung S; Boreyko JB
    J R Soc Interface; 2022 May; 19(190):20210872. PubMed ID: 35582813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant science: The chestnut resurrection.
    Thompson H
    Nature; 2012 Oct; 490(7418):22-3. PubMed ID: 23038446
    [No Abstract]   [Full Text] [Related]  

  • 17. Long-Distance Dispersal of Fungi.
    Golan JJ; Pringle A
    Microbiol Spectr; 2017 Jul; 5(4):. PubMed ID: 28710849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hidden host plant associations of soilborne fungal pathogens: an ecological perspective.
    Malcolm GM; Kuldau GA; Gugino BK; Jiménez-Gasco Mdel M
    Phytopathology; 2013 Jun; 103(6):538-44. PubMed ID: 23301815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic signal in plant pathogen-host range.
    Gilbert GS; Webb CO
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4979-83. PubMed ID: 17360396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In the wind: Invasive species travel along predictable atmospheric pathways.
    Pretorius I; Schou WC; Richardson B; Ross SD; Withers TM; Schmale DG; Strand TM
    Ecol Appl; 2023 Apr; 33(3):e2806. PubMed ID: 36660794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.