These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26047565)

  • 1. Range-expanding pests and pathogens in a warming world.
    Bebber DP
    Annu Rev Phytopathol; 2015; 53():335-56. PubMed ID: 26047565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes.
    Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O
    Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating pests and pathogens into the climate change/food security debate.
    Gregory PJ; Johnson SN; Newton AC; Ingram JS
    J Exp Bot; 2009; 60(10):2827-38. PubMed ID: 19380424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migrate or evolve: options for plant pathogens under climate change.
    Chakraborty S
    Glob Chang Biol; 2013 Jul; 19(7):1985-2000. PubMed ID: 23554235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate warming affects biological invasions by shifting interactions of plants and herbivores.
    Lu X; Siemann E; Shao X; Wei H; Ding J
    Glob Chang Biol; 2013 Aug; 19(8):2339-47. PubMed ID: 23640751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata).
    Berzitis EA; Minigan JN; Hallett RH; Newman JA
    Glob Chang Biol; 2014 Sep; 20(9):2778-92. PubMed ID: 24616016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.
    Trębicki P; Dáder B; Vassiliadis S; Fereres A
    Insect Sci; 2017 Dec; 24(6):975-989. PubMed ID: 28843026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.
    Farrer EC; Ashton IW; Knape J; Suding KN
    Glob Chang Biol; 2014 Apr; 20(4):1238-50. PubMed ID: 24115317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.
    Shi P; Hui C; Men X; Zhao Z; Ouyang F; Ge F; Jin X; Cao H; Li BL
    Sci China Life Sci; 2014 Jul; 57(7):718-25. PubMed ID: 24907938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.
    Tito R; Vasconcelos HL; Feeley KJ
    Glob Chang Biol; 2018 Feb; 24(2):e592-e602. PubMed ID: 29055170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant disease: a threat to global food security.
    Strange RN; Scott PR
    Annu Rev Phytopathol; 2005; 43():83-116. PubMed ID: 16078878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop connectivity under climate change: future environmental and geographic risks of potato late blight in Scotland.
    Skelsey P; Cooke DE; Lynott JS; Lees AK
    Glob Chang Biol; 2016 Nov; 22(11):3724-3738. PubMed ID: 27214030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How will biotic interactions influence climate change-induced range shifts?
    HilleRisLambers J; Harsch MA; Ettinger AK; Ford KR; Theobald EJ
    Ann N Y Acad Sci; 2013 Sep; 1297():112-25. PubMed ID: 23876073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The global burden of pathogens and pests on major food crops.
    Savary S; Willocquet L; Pethybridge SJ; Esker P; McRoberts N; Nelson A
    Nat Ecol Evol; 2019 Mar; 3(3):430-439. PubMed ID: 30718852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabrotica virgifera virgifera LeConte: inconspicuous leaf beetle--formidable challenges to agriculture.
    Hummel HE
    Commun Agric Appl Biol Sci; 2007; 72(2):7-32. PubMed ID: 18399421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we forecast the effects of climate change on entomophagous biological control agents?
    Aguilar-Fenollosa E; Jacas JA
    Pest Manag Sci; 2014 Jun; 70(6):853-9. PubMed ID: 24254389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop protection science at IACR.
    Crute I; Denholm I; Kerry B; Lucas J; Pickett J;
    Pest Manag Sci; 2003 Feb; 59(2):125-7. PubMed ID: 12587865
    [No Abstract]   [Full Text] [Related]  

  • 18. Temperature tracking by North Sea benthic invertebrates in response to climate change.
    Hiddink JG; Burrows MT; García Molinos J
    Glob Chang Biol; 2015 Jan; 21(1):117-29. PubMed ID: 25179407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil health paradigms and implications for disease management.
    Larkin RP
    Annu Rev Phytopathol; 2015; 53():199-221. PubMed ID: 26002292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A
    Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.