BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1683 related articles for article (PubMed ID: 26048077)

  • 21. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping.
    Sathyanarayanan A; Gupta R; Thompson EW; Nyholt DR; Bauer DC; Nagaraj SH
    Brief Bioinform; 2020 Dec; 21(6):1920-1936. PubMed ID: 31774481
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of pathway structure information into a reweighted partial Cox regression approach for survival analysis on high-dimensional gene expression data.
    Liu W; Wang Q; Zhao J; Zhang C; Liu Y; Zhang J; Bai X; Li X; Feng H; Liao M; Wang W; Li C
    Mol Biosyst; 2015 Jul; 11(7):1876-86. PubMed ID: 25891149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Building trans-omics evidence: using imaging and 'omics' to characterize cancer profiles.
    Srivastava A; Kulkarni C; Mallick P; Huang K; Machiraju R
    Pac Symp Biocomput; 2018; 23():377-387. PubMed ID: 29218898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification.
    Chung RH; Kang CY
    Gigascience; 2019 May; 8(5):. PubMed ID: 31029063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer.
    Kim SY; Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):68. PubMed ID: 30255812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data.
    Lin Y; Zhang W; Cao H; Li G; Du W
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32759821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixture classification model based on clinical markers for breast cancer prognosis.
    Zeng T; Liu J
    Artif Intell Med; 2010; 48(2-3):129-37. PubMed ID: 20005686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.
    Malik V; Kalakoti Y; Sundar D
    BMC Genomics; 2021 Mar; 22(1):214. PubMed ID: 33761889
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
    Chaudhary K; Poirion OB; Lu L; Garmire LX
    Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA.
    Zhao Q; Shi X; Xie Y; Huang J; Shia B; Ma S
    Brief Bioinform; 2015 Mar; 16(2):291-303. PubMed ID: 24632304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bayesian variable selection with graphical structure learning: Applications in integrative genomics.
    Kundu S; Cheng Y; Shin M; Manyam G; Mallick BK; Baladandayuthapani V
    PLoS One; 2018; 13(7):e0195070. PubMed ID: 30059495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of methylation sites and signature genes with prognostic value for luminal breast cancer.
    Xiao B; Chen L; Ke Y; Hang J; Cao L; Zhang R; Zhang W; Liao Y; Gao Y; Chen J; Li L; Hao W; Sun Z; Li L
    BMC Cancer; 2018 Apr; 18(1):405. PubMed ID: 29642861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis.
    Zhang Y; Yang W; Li D; Yang JY; Guan R; Yang MQ
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):104. PubMed ID: 30454048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.
    Xie G; Dong C; Kong Y; Zhong JF; Li M; Wang K
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30901858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATHENA: Identifying interactions between different levels of genomic data associated with cancer clinical outcomes using grammatical evolution neural network.
    Kim D; Li R; Dudek SM; Ritchie MD
    BioData Min; 2013 Dec; 6(1):23. PubMed ID: 24359638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrative analysis of survival-associated gene sets in breast cancer.
    Varn FS; Ung MH; Lou SK; Cheng C
    BMC Med Genomics; 2015 Mar; 8():11. PubMed ID: 25881247
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of years of life after diagnosis of breast cancer using omics and omic-by-treatment interactions.
    González-Reymúndez A; de Los Campos G; Gutiérrez L; Lunt SY; Vazquez AI
    Eur J Hum Genet; 2017 May; 25(5):538-544. PubMed ID: 28272536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 85.