BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

834 related articles for article (PubMed ID: 26048156)

  • 21. TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington's disease.
    Zhao X; Chen XQ; Han E; Hu Y; Paik P; Ding Z; Overman J; Lau AL; Shahmoradian SH; Chiu W; Thompson LM; Wu C; Mobley WC
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):E5655-64. PubMed ID: 27601642
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Worsening of Huntington disease phenotype in CB1 receptor knockout mice.
    Mievis S; Blum D; Ledent C
    Neurobiol Dis; 2011 Jun; 42(3):524-9. PubMed ID: 21406230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration.
    Lu B; Palacino J
    FASEB J; 2013 May; 27(5):1820-9. PubMed ID: 23325320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease.
    Sbodio JI; Paul BD; Machamer CE; Snyder SH
    Cell Rep; 2013 Sep; 4(5):890-7. PubMed ID: 24012756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear translocation of STAT5 initiates iron overload in huntington's disease by up-regulating IRP1 expression.
    Niu L; Zhou Y; Wang J; Zeng W
    Metab Brain Dis; 2024 Apr; 39(4):559-567. PubMed ID: 38261161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of Hap1 selectively promotes striatal degeneration in Huntington disease mice.
    Liu Q; Cheng S; Yang H; Zhu L; Pan Y; Jing L; Tang B; Li S; Li XJ
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20265-20273. PubMed ID: 32747555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington's disease.
    Hsiao HY; Chen YC; Chen HM; Tu PH; Chern Y
    Hum Mol Genet; 2013 May; 22(9):1826-42. PubMed ID: 23372043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington's disease.
    Zhou X; Li G; Kaplan A; Gaschler MM; Zhang X; Hou Z; Jiang M; Zott R; Cremers S; Stockwell BR; Duan W
    Hum Mol Genet; 2018 May; 27(9):1545-1555. PubMed ID: 29462355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model.
    Wu J; Ryskamp DA; Liang X; Egorova P; Zakharova O; Hung G; Bezprozvanny I
    J Neurosci; 2016 Jan; 36(1):125-41. PubMed ID: 26740655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington's disease.
    Mealer RG; Subramaniam S; Snyder SH
    J Neurosci; 2013 Feb; 33(9):4206-10. PubMed ID: 23447628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice.
    Vodicka P; Chase K; Iuliano M; Tousley A; Valentine DT; Sapp E; Kegel-Gleason KB; Sena-Esteves M; Aronin N; DiFiglia M
    J Huntingtons Dis; 2016 Oct; 5(3):249-260. PubMed ID: 27689619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dysfunction of X-linked inhibitor of apoptosis protein (XIAP) triggers neuropathological processes via altered p53 activity in Huntington's disease.
    Hyeon SJ; Park J; Yoo J; Kim SH; Hwang YJ; Kim SC; Liu T; Shim HS; Kim Y; Cho Y; Woo J; Kim KS; Myers RH; Ryu HL; Kowall NW; Song EJ; Hwang EM; Seo H; Lee J; Ryu H
    Prog Neurobiol; 2021 Sep; 204():102110. PubMed ID: 34166773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adeno-Associated Viral Vector Serotype DJ-Mediated Overexpression of N171-82Q-Mutant Huntingtin in the Striatum of Juvenile Mice Is a New Model for Huntington's Disease.
    Jang M; Lee SE; Cho IH
    Front Cell Neurosci; 2018; 12():157. PubMed ID: 29946240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity.
    Subramaniam S; Sixt KM; Barrow R; Snyder SH
    Science; 2009 Jun; 324(5932):1327-30. PubMed ID: 19498170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhes suppression enhances disease phenotypes in Huntington's disease mice.
    Lee JH; Sowada MJ; Boudreau RL; Aerts AM; Thedens DR; Nopoulos P; Davidson BL
    J Huntingtons Dis; 2014; 3(1):65-71. PubMed ID: 25062765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of the thyroid hormone-binding protein Crym renders striatal neurons more vulnerable to mutant huntingtin in Huntington's disease.
    Francelle L; Galvan L; Gaillard MC; Guillermier M; Houitte D; Bonvento G; Petit F; Jan C; Dufour N; Hantraye P; Elalouf JM; De Chaldée M; Déglon N; Brouillet E
    Hum Mol Genet; 2015 Mar; 24(6):1563-73. PubMed ID: 25398949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington's disease-like phenotype in BACHD mice.
    Petkau TL; Hill A; Connolly C; Lu G; Wagner P; Kosior N; Blanco J; Leavitt BR
    Hum Mol Genet; 2019 May; 28(10):1661-1670. PubMed ID: 30624705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease.
    Dai Y; Dudek NL; Li Q; Fowler SC; Muma NA
    J Neurosci; 2009 Sep; 29(37):11550-9. PubMed ID: 19759302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beneficial behavioral effects of chronic cerebral dopamine neurotrophic factor (CDNF) infusion in the N171-82Q transgenic model of Huntington's disease.
    Stepanova P; Kumar D; Cavonius K; Korpikoski J; Sirjala J; Lindholm D; Voutilainen MH
    Sci Rep; 2023 Feb; 13(1):2953. PubMed ID: 36807563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.