These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 26048279)

  • 1. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.
    Dutt V; Gupta S; Dabur R; Injeti E; Mittal A
    Pharmacol Res; 2015 Sep; 99():86-100. PubMed ID: 26048279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting.
    Ryall JG; Lynch GS
    Pharmacol Ther; 2008 Dec; 120(3):219-32. PubMed ID: 18834902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting.
    Tisdale MJ
    J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β2-Adrenergic agonists and the treatment of skeletal muscle wasting disorders.
    Joassard OR; Durieux AC; Freyssenet DG
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2309-21. PubMed ID: 23845739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphodiesterase 4 inhibition reduces skeletal muscle atrophy.
    Hinkle RT; Dolan E; Cody DB; Bauer MB; Isfort RJ
    Muscle Nerve; 2005 Dec; 32(6):775-81. PubMed ID: 16116651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathophysiology of peripheral muscle wasting in cardiac cachexia.
    Filippatos GS; Anker SD; Kremastinos DT
    Curr Opin Clin Nutr Metab Care; 2005 May; 8(3):249-54. PubMed ID: 15809526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucocorticoid-induced skeletal muscle atrophy.
    Schakman O; Kalista S; Barbé C; Loumaye A; Thissen JP
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2163-72. PubMed ID: 23806868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.
    Weihrauch M; Handschin C
    Biochem Pharmacol; 2018 Jan; 147():211-220. PubMed ID: 29061342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggers and mechanisms of skeletal muscle wasting in chronic obstructive pulmonary disease.
    Langen RC; Gosker HR; Remels AH; Schols AM
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2245-56. PubMed ID: 23827718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle.
    Joassard OR; Amirouche A; Gallot YS; Desgeorges MM; Castells J; Durieux AC; Berthon P; Freyssenet DG
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2444-55. PubMed ID: 23916784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle wasting in cardiac cachexia.
    Strassburg S; Springer J; Anker SD
    Int J Biochem Cell Biol; 2005 Oct; 37(10):1938-47. PubMed ID: 15927519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease.
    Lynch GS; Ryall JG
    Physiol Rev; 2008 Apr; 88(2):729-67. PubMed ID: 18391178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drugs of Muscle Wasting and Their Therapeutic Targets.
    Sakuma K; Yamaguchi A
    Adv Exp Med Biol; 2018; 1088():463-481. PubMed ID: 30390265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-protective effects of Schisandrae Fructus extracts in old mice after chronic forced exercise.
    Kim KY; Ku SK; Lee KW; Song CH; An WG
    J Ethnopharmacol; 2018 Feb; 212():175-187. PubMed ID: 29107647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomoxetine prevents dexamethasone-induced skeletal muscle atrophy in mice.
    Jesinkey SR; Korrapati MC; Rasbach KA; Beeson CC; Schnellmann RG
    J Pharmacol Exp Ther; 2014 Dec; 351(3):663-73. PubMed ID: 25292181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of beta2-adrenergic agonists.
    Fuster G; Busquets S; Ametller E; Olivan M; Almendro V; de Oliveira CC; Figueras M; López-Soriano FJ; Argilés JM
    Cancer Res; 2007 Jul; 67(13):6512-9. PubMed ID: 17616713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible role of myostatin in skeletal muscle atrophy and cachexia.
    Jespersen J; Kjaer M; Schjerling P
    Scand J Med Sci Sports; 2006 Apr; 16(2):74-82. PubMed ID: 16533345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms regulating skeletal muscle growth and atrophy.
    Schiaffino S; Dyar KA; Ciciliot S; Blaauw B; Sandri M
    FEBS J; 2013 Sep; 280(17):4294-314. PubMed ID: 23517348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.