BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 26048361)

  • 1. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.
    Chi OZ; Wu CC; Liu X; Rah KH; Jacinto E; Weiss HR
    Neuromolecular Med; 2015 Sep; 17(3):305-13. PubMed ID: 26048361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism.
    Weiss HR; Liu X; Zhang Q; Chi OZ
    J Neurosci Res; 2007 Aug; 85(11):2512-7. PubMed ID: 17549750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral O(2) consumption in young Eker rats, effects of GABA blockade: implications for autism.
    Weiss HR; Liu X; Chi OZ
    Int J Dev Neurosci; 2008 Aug; 26(5):517-21. PubMed ID: 18282678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced effect of stimulation of AMPA receptors on cerebral O₂ consumption in a rat model of autism.
    Weiss HR; Liu X; Grewal P; Chi OZ
    Neuropharmacology; 2012 Oct; 63(5):837-41. PubMed ID: 22722031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor blockade on increased cerebral O(2) consumption in Eker rats.
    Weiss HR; Liu X; Hunter C; Chi OZ
    Brain Res; 2009 Oct; 1294():138-43. PubMed ID: 19686708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rapamycin in the Eker rat model of tuberous sclerosis complex.
    Kenerson H; Dundon TA; Yeung RS
    Pediatr Res; 2005 Jan; 57(1):67-75. PubMed ID: 15557109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced expression of glucose transporter-1 in vascular smooth muscle cells via the Akt/tuberous sclerosis complex subunit 2 (TSC2)/mammalian target of rapamycin (mTOR)/ribosomal S6 protein kinase (S6K) pathway in experimental renal failure.
    Lin CY; Hsu SC; Lee HS; Lin SH; Tsai CS; Huang SM; Shih CC; Hsu YJ
    J Vasc Surg; 2013 Feb; 57(2):475-85. PubMed ID: 23265586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.
    Chi OZ; Barsoum S; Vega-Cotto NM; Jacinto E; Liu X; Mellender SJ; Weiss HR
    Neuroscience; 2016 Mar; 316():321-7. PubMed ID: 26742793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. mTOR Inhibitors in Children: Current Indications and Future Directions in Neurology.
    Jeong A; Wong M
    Curr Neurol Neurosci Rep; 2016 Dec; 16(12):102. PubMed ID: 27815691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex.
    MacKeigan JP; Krueger DA
    Neuro Oncol; 2015 Dec; 17(12):1550-9. PubMed ID: 26289591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolonging the survival of Tsc2 conditional knockout mice by glutamine supplementation.
    Rozas NS; Redell JB; McKenna J; Moore AN; Gambello MJ; Dash PK
    Biochem Biophys Res Commun; 2015 Feb; 457(4):635-9. PubMed ID: 25613864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders.
    Ehninger D; Silva AJ
    Trends Mol Med; 2011 Feb; 17(2):78-87. PubMed ID: 21115397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex.
    Sato A; Kasai S; Kobayashi T; Takamatsu Y; Hino O; Ikeda K; Mizuguchi M
    Nat Commun; 2012; 3():1292. PubMed ID: 23250422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex.
    Hino O; Kobayashi T
    Cancer Sci; 2017 Jan; 108(1):5-11. PubMed ID: 27862655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors.
    Kenerson HL; Aicher LD; True LD; Yeung RS
    Cancer Res; 2002 Oct; 62(20):5645-50. PubMed ID: 12384518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanistic target of rapamycin (mTOR) pathway and S6 Kinase mediate diazoxide preconditioning in primary rat cortical neurons.
    Dutta S; Rutkai I; Katakam PV; Busija DW
    J Neurochem; 2015 Sep; 134(5):845-56. PubMed ID: 26016889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex.
    Takahashi DK; Dinday MT; Barbaro NM; Baraban SC
    Epilepsia; 2004 Dec; 45(12):1525-30. PubMed ID: 15571510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuberous Sclerosis: A New Frontier in Targeted Treatment of Autism.
    Davis PE; Peters JM; Krueger DA; Sahin M
    Neurotherapeutics; 2015 Jul; 12(3):572-83. PubMed ID: 25986747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex.
    Rensing N; Han L; Wong M
    Epilepsia; 2015 Jul; 56(7):1088-97. PubMed ID: 26122303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain proteomic investigation of rapamycin effects in the
    Wesseling H; Elgersma Y; Bahn S
    Mol Autism; 2017; 8():41. PubMed ID: 28775826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.