BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 26048452)

  • 1. Recognition of activities of daily living in healthy subjects using two ad-hoc classifiers.
    Urwyler P; Rampa L; Stucki R; Büchler M; Müri R; Mosimann UP; Nef T
    Biomed Eng Online; 2015 Jun; 14():54. PubMed ID: 26048452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A web-based non-intrusive ambient system to measure and classify activities of daily living.
    Stucki RA; Urwyler P; Rampa L; Müri R; Mosimann UP; Nef T
    J Med Internet Res; 2014 Jul; 16(7):e175. PubMed ID: 25048461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification.
    Biswas D; Cranny A; Gupta N; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Hum Mov Sci; 2015 Apr; 40():59-76. PubMed ID: 25528632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Human Activity Recognition Using Wearable Sensors.
    Attal F; Mohammed S; Dedabrishvili M; Chamroukhi F; Oukhellou L; Amirat Y
    Sensors (Basel); 2015 Dec; 15(12):31314-38. PubMed ID: 26690450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensor Fusion for Recognition of Activities of Daily Living.
    Wu J; Feng Y; Sun P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30463199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of pattern recognition classifiers to predict physical activities using smartphones and wearable body sensors.
    Kouris I; Koutsouris D
    Technol Health Care; 2012; 20(4):263-75. PubMed ID: 23000559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective Assessment of Physical Activity: Classifiers for Public Health.
    Kerr J; Patterson RE; Ellis K; Godbole S; Johnson E; Lanckriet G; Staudenmayer J
    Med Sci Sports Exerc; 2016 May; 48(5):951-7. PubMed ID: 27089222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.
    Fleury A; Vacher M; Noury N
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):274-83. PubMed ID: 20007037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.
    Jiménez F; Sánchez G; Juárez JM
    Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature selection and activity recognition system using a single triaxial accelerometer.
    Gupta P; Dallas T
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1780-6. PubMed ID: 24691526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care.
    Zhu H; Chen H; Brown R
    J Biomed Inform; 2018 Aug; 84():148-158. PubMed ID: 30004019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors.
    Liu KC; Chan CT
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28106853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Analysis of Boosting Classifiers in Recognizing Activities of Daily Living.
    Rahman S; Irfan M; Raza M; Moyeezullah Ghori K; Yaqoob S; Awais M
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new classifier fusion method based on historical and on-line classification reliability for recognizing common CT imaging signs of lung diseases.
    Ma L; Liu X; Song L; Zhou C; Zhao X; Zhao Y
    Comput Med Imaging Graph; 2015 Mar; 40():39-48. PubMed ID: 25453465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet-based algorithm for auto-detection of daily living activities of older adults captured by multiple inertial measurement units (IMUs).
    Ayachi FS; Nguyen HP; Lavigne-Pelletier C; Goubault E; Boissy P; Duval C
    Physiol Meas; 2016 Mar; 37(3):442-61. PubMed ID: 26914432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial Data-Based AI Approaches for ADL and Fall Recognition.
    Martins LM; Ribeiro NF; Soares F; Santos CP
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.
    Seiter J; Derungs A; Schuster-Amft C; Amft O; Tröster G
    Methods Inf Med; 2015; 54(3):248-55. PubMed ID: 25658903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.