These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 26048479)
1. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Minardi S; Corradetti B; Taraballi F; Sandri M; Van Eps J; Cabrera FJ; Weiner BK; Tampieri A; Tasciotti E Biomaterials; 2015 Sep; 62():128-37. PubMed ID: 26048479 [TBL] [Abstract][Full Text] [Related]
2. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
3. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549 [TBL] [Abstract][Full Text] [Related]
4. Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration. Gawlitta D; Benders KE; Visser J; van der Sar AS; Kempen DH; Theyse LF; Malda J; Dhert WJ Tissue Eng Part A; 2015 Feb; 21(3-4):694-703. PubMed ID: 25316202 [TBL] [Abstract][Full Text] [Related]
5. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
6. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells - a comparison of different tissue sources. Stockmann P; Park J; von Wilmowsky C; Nkenke E; Felszeghy E; Dehner JF; Schmitt C; Tudor C; Schlegel KA J Craniomaxillofac Surg; 2012 Jun; 40(4):310-20. PubMed ID: 21723141 [TBL] [Abstract][Full Text] [Related]
7. In vitro construction of tissue-engineered bone with bone morphogenetic protein-2-transfected rabbit bone marrow mesenchymal stem cells and hydroxyapatite nanocomposite. He C; He C; Mo J; Fan X; Ji G; Liu W; Wu D; Zhu W; Wang D; Gao H Biomed Tech (Berl); 2013 Feb; 58(1):97-104. PubMed ID: 23370904 [TBL] [Abstract][Full Text] [Related]
8. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of bioactive polyvinylpyrrolidone-iodine within bilayered collagen scaffolds enhances the differentiation and subchondral osteogenesis of mesenchymal stem cells. Jiang Y; Chen L; Zhang S; Tong T; Zhang W; Liu W; Xu G; Tuan RS; Heng BC; Crawford R; Xiao Y; Ouyang HW Acta Biomater; 2013 Sep; 9(9):8089-98. PubMed ID: 23707501 [TBL] [Abstract][Full Text] [Related]
10. Graded porous polyurethane foam: a potential scaffold for oro-maxillary bone regeneration. Giannitelli SM; Basoli F; Mozetic P; Piva P; Bartuli FN; Luciani F; Arcuri C; Trombetta M; Rainer A; Licoccia S Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():329-35. PubMed ID: 25842142 [TBL] [Abstract][Full Text] [Related]
11. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
15. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction. Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048 [TBL] [Abstract][Full Text] [Related]
16. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
17. Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Sánchez-Ferrero A; Mata Á; Mateos-Timoneda MA; Rodríguez-Cabello JC; Alonso M; Planell J; Engel E Biomaterials; 2015 Nov; 68():42-53. PubMed ID: 26264645 [TBL] [Abstract][Full Text] [Related]
18. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure. Wu H; Liu GH; Wu Q; Yu B Genet Mol Res; 2015 Oct; 14(4):11933-43. PubMed ID: 26505341 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
20. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]