These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
570 related articles for article (PubMed ID: 26048479)
21. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
22. Characterization of human ethmoid sinus mucosa derived mesenchymal stem cells (hESMSCs) and the application of hESMSCs cell sheets in bone regeneration. Xie Q; Wang Z; Huang Y; Bi X; Zhou H; Lin M; Yu Z; Wang Y; Ni N; Sun J; Wu S; You Z; Guo C; Sun H; Wang Y; Gu P; Fan X Biomaterials; 2015 Oct; 66():67-82. PubMed ID: 26196534 [TBL] [Abstract][Full Text] [Related]
23. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Ji J; Tong X; Huang X; Wang T; Lin Z; Cao Y; Zhang J; Dong L; Qin H; Hu Q Biomed Mater; 2015 Jul; 10(4):045005. PubMed ID: 26154827 [TBL] [Abstract][Full Text] [Related]
24. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
25. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
26. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [TBL] [Abstract][Full Text] [Related]
27. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
29. Coculture of peripheral blood CD34+ cell and mesenchymal stem cell sheets increase the formation of bone in calvarial critical-size defects in rabbits. Li G; Wang X; Cao J; Ju Z; Ma D; Liu Y; Zhang J Br J Oral Maxillofac Surg; 2014 Feb; 52(2):134-9. PubMed ID: 24210781 [TBL] [Abstract][Full Text] [Related]
30. Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Narayan R; Agarwal T; Mishra D; Maji S; Mohanty S; Mukhopadhyay A; Maiti TK Colloids Surf B Biointerfaces; 2017 Dec; 160():661-670. PubMed ID: 29031226 [TBL] [Abstract][Full Text] [Related]
31. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. Chen G; Yang L; Lv Y J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620 [TBL] [Abstract][Full Text] [Related]
32. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576 [TBL] [Abstract][Full Text] [Related]
33. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone. Wittenburg G; Flade V; Garbe AI; Lauer G; Labudde D Br J Oral Maxillofac Surg; 2014 May; 52(5):409-14. PubMed ID: 24685477 [TBL] [Abstract][Full Text] [Related]
34. Improving bone marrow stromal cell attachment on chitosan/hydroxyapatite scaffolds by an immobilized RGD peptide. Qu Z; Yan J; Li B; Zhuang J; Huang Y Biomed Mater; 2010 Dec; 5(6):065001. PubMed ID: 20924135 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of zinc-doped mesoporous hydroxyapatite microspheres for the construction of a novel biomimetic scaffold optimized for bone augmentation. Yu W; Sun TW; Qi C; Ding Z; Zhao H; Zhao S; Shi Z; Zhu YJ; Chen D; He Y Int J Nanomedicine; 2017; 12():2293-2306. PubMed ID: 28392688 [TBL] [Abstract][Full Text] [Related]
36. In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. Alvarez Perez MA; Guarino V; Cirillo V; Ambrosio L J Biomed Mater Res A; 2012 Nov; 100(11):3008-19. PubMed ID: 22700476 [TBL] [Abstract][Full Text] [Related]
37. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Huang C; Ogawa R Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391 [TBL] [Abstract][Full Text] [Related]