These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26048933)

  • 1. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.
    Ercan O; Bisschops MM; Overkamp W; Jørgensen TR; Ram AF; Smid EJ; Pronk JT; Kuipers OP; Daran-Lapujade P; Kleerebezem M
    Appl Environ Microbiol; 2015 Sep; 81(17):5662-70. PubMed ID: 26048933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Jan; 81(1):320-31. PubMed ID: 25344239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis.
    Overkamp W; Ercan O; Herber M; van Maris AJ; Kleerebezem M; Kuipers OP
    Environ Microbiol; 2015 Feb; 17(2):346-63. PubMed ID: 25367190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly active promoters and native secretion signals for protein production during extremely low growth rates in Aspergillus niger.
    Wanka F; Arentshorst M; Cairns TC; Jørgensen T; Ram AF; Meyer V
    Microb Cell Fact; 2016 Aug; 15(1):145. PubMed ID: 27544686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero.
    Jørgensen TR; Nitsche BM; Lamers GE; Arentshorst M; van den Hondel CA; Ram AF
    Appl Environ Microbiol; 2010 Aug; 76(16):5344-55. PubMed ID: 20562270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative physiology of Lactococcus lactis at extreme low-growth rates.
    Ercan O; Smid EJ; Kleerebezem M
    Environ Microbiol; 2013 Aug; 15(8):2319-32. PubMed ID: 23461598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
    Boender LG; van Maris AJ; de Hulster EA; Almering MJ; van der Klei IJ; Veenhuis M; de Winde JH; Pronk JT; Daran-Lapujade P
    FEMS Yeast Res; 2011 Dec; 11(8):603-20. PubMed ID: 22093745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.
    Ercan O; Wels M; Smid EJ; Kleerebezem M
    Appl Environ Microbiol; 2015 Apr; 81(7):2554-61. PubMed ID: 25636846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2012 Aug; 51(3):125-30. PubMed ID: 22759530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome adaptation of Saccharomyces cerevisiae to severe calorie restriction in Retentostat cultures.
    Binai NA; Bisschops MM; van Breukelen B; Mohammed S; Loeff L; Pronk JT; Heck AJ; Daran-Lapujade P; Slijper M
    J Proteome Res; 2014 Aug; 13(8):3542-53. PubMed ID: 25000127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain.
    Liu Y; Esen O; Pronk JT; van Gulik WM
    Biotechnol Bioeng; 2021 Apr; 118(4):1576-1586. PubMed ID: 33410171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation.
    Berbegal C; Peña N; Russo P; Grieco F; Pardo I; Ferrer S; Spano G; Capozzi V
    Food Microbiol; 2016 Aug; 57():187-94. PubMed ID: 27052718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ; Lin XH; Li H
    Int J Biochem Cell Biol; 2015 Nov; 68():33-41. PubMed ID: 26279142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological responses of Saccharomyces cerevisiae to industrially relevant conditions: Slow growth, low pH, and high CO
    Hakkaart X; Liu Y; Hulst M; El Masoudi A; Peuscher E; Pronk J; van Gulik W; Daran-Lapujade P
    Biotechnol Bioeng; 2020 Mar; 117(3):721-735. PubMed ID: 31654410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ activity of a bacteriocin-producing Lactococcus lactis strain. Influence on the interactions between lactic acid bacteria during sourdough fermentation.
    Settanni L; Massitti O; Van Sinderen D; Corsetti A
    J Appl Microbiol; 2005; 99(3):670-81. PubMed ID: 16108809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a novel inducible expression vector for Lactococcus lactis M4 and Lactobacillus plantarum Pa21.
    Maidin MS; Song AA; Jalilsood T; Sieo CC; Yusoff K; Rahim RA
    Plasmid; 2014 Jul; 74():32-8. PubMed ID: 24879963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation.
    Papagianni M; Avramidis N
    Enzyme Microb Technol; 2011 Jul; 49(2):197-202. PubMed ID: 22112409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.