These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26048956)

  • 1. Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change.
    Marozzi E; Ginzberg LL; Alenda A; Jeffery KJ
    Cereb Cortex; 2015 Nov; 25(11):4619-27. PubMed ID: 26048956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of the position of an animal based on populations of grid and place cells: a comparative simulation study.
    Guanella A; Verschure PF
    J Integr Neurosci; 2007 Sep; 6(3):433-46. PubMed ID: 17933020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-dependent rescaling of entorhinal grids.
    Barry C; Hayman R; Burgess N; Jeffery KJ
    Nat Neurosci; 2007 Jun; 10(6):682-4. PubMed ID: 17486102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure of a spatial map in the entorhinal cortex.
    Hafting T; Fyhn M; Molden S; Moser MB; Moser EI
    Nature; 2005 Aug; 436(7052):801-6. PubMed ID: 15965463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of boundary removal on the spatial representations of the medial entorhinal cortex.
    Savelli F; Yoganarasimha D; Knierim JJ
    Hippocampus; 2008; 18(12):1270-82. PubMed ID: 19021262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hebbian analysis of the transformation of medial entorhinal grid-cell inputs to hippocampal place fields.
    Savelli F; Knierim JJ
    J Neurophysiol; 2010 Jun; 103(6):3167-83. PubMed ID: 20357069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of the sensory inputs to place cells: what, where, why, and how?
    Jeffery KJ
    Hippocampus; 2007; 17(9):775-85. PubMed ID: 17615579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex.
    Pérez-Escobar JA; Kornienko O; Latuske P; Kohler L; Allen K
    Elife; 2016 Jul; 5():. PubMed ID: 27449281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grid-Cell Activity on Linear Tracks Indicates Purely Translational Remapping of 2D Firing Patterns at Movement Turning Points.
    Pröll M; Häusler S; Herz AVM
    J Neurosci; 2018 Aug; 38(31):7004-7011. PubMed ID: 29976622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices.
    Keene CS; Bladon J; McKenzie S; Liu CD; O'Keefe J; Eichenbaum H
    J Neurosci; 2016 Mar; 36(13):3660-75. PubMed ID: 27030753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired path integration and grid cell spatial periodicity in mice lacking GluA1-containing AMPA receptors.
    Allen K; Gil M; Resnik E; Toader O; Seeburg P; Monyer H
    J Neurosci; 2014 Apr; 34(18):6245-59. PubMed ID: 24790195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for the differentiation between grid and conjunctive units in medial entorhinal cortex.
    Si B; Treves A
    Hippocampus; 2013 Dec; 23(12):1410-24. PubMed ID: 23966345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
    Grossberg S; Pilly PK
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grid cell symmetry is shaped by environmental geometry.
    Krupic J; Bauza M; Burton S; Barry C; O'Keefe J
    Nature; 2015 Feb; 518(7538):232-235. PubMed ID: 25673417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grid cells in mice.
    Fyhn M; Hafting T; Witter MP; Moser EI; Moser MB
    Hippocampus; 2008; 18(12):1230-8. PubMed ID: 18683845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Place cells, grid cells, and the brain's spatial representation system.
    Moser EI; Kropff E; Moser MB
    Annu Rev Neurosci; 2008; 31():69-89. PubMed ID: 18284371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragmentation of grid cell maps in a multicompartment environment.
    Derdikman D; Whitlock JR; Tsao A; Fyhn M; Hafting T; Moser MB; Moser EI
    Nat Neurosci; 2009 Oct; 12(10):1325-32. PubMed ID: 19749749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.