BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26049024)

  • 1. Differential zinc permeation and blockade of L-type Ca2+ channel isoforms Cav1.2 and Cav1.3.
    Park SJ; Min SH; Kang HW; Lee JH
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2092-100. PubMed ID: 26049024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cav1.4alpha1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation.
    Koschak A; Reimer D; Walter D; Hoda JC; Heinzle T; Grabner M; Striessnig J
    J Neurosci; 2003 Jul; 23(14):6041-9. PubMed ID: 12853422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967).
    Bezprozvanny I; Tsien RW
    Mol Pharmacol; 1995 Sep; 48(3):540-9. PubMed ID: 7565636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line.
    Scholze A; Plant TD; Dolphin AC; Nürnberg B
    Mol Endocrinol; 2001 Jul; 15(7):1211-21. PubMed ID: 11435619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negatively charged residues in the N-terminal of the AID helix confer slow voltage dependent inactivation gating to CaV1.2.
    Dafi O; Berrou L; Dodier Y; Raybaud A; Sauvé R; Parent L
    Biophys J; 2004 Nov; 87(5):3181-92. PubMed ID: 15339810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of a hamster Cav1.3 Ca2+ channel variant with a long carboxyl terminus.
    Kang HW; Park JY; Lee JH
    Biochim Biophys Acta; 2011 Jun; 1808(6):1629-38. PubMed ID: 21093409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium channel currents in Xenopus oocytes injected with rat skeletal muscle RNA.
    Dascal N; Lotan I; Karni E; Gigi A
    J Physiol; 1992 May; 450():469-90. PubMed ID: 1279162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel molecular inactivation determinant of voltage-gated CaV1.2 L-type Ca2+ channel.
    Livneh A; Cohen R; Atlas D
    Neuroscience; 2006; 139(4):1275-87. PubMed ID: 16533566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutations causing hypokalaemic periodic paralysis on the skeletal muscle L-type Ca2+ channel expressed in Xenopus laevis oocytes.
    Morrill JA; Cannon SC
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):321-36. PubMed ID: 10523403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels.
    Li J; Stevens L; Klugbauer N; Wray D
    J Biol Chem; 2004 Jun; 279(26):26858-67. PubMed ID: 15100229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of extracellular Ca2+ in gating of CaV1.2 channels.
    Babich O; Isaev D; Shirokov R
    J Physiol; 2005 Jun; 565(Pt 3):709-15. PubMed ID: 15845581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones.
    Kerchner GA; Canzoniero LM; Yu SP; Ling C; Choi DW
    J Physiol; 2000 Oct; 528 Pt 1(Pt 1):39-52. PubMed ID: 11018104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a conserved glutamine in the function of voltage-gated Ca
    Garza-Lopez E; Lopez JA; Hagen J; Sheffer R; Meiner V; Lee A
    J Biol Chem; 2018 Sep; 293(37):14444-14454. PubMed ID: 30054272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes.
    Andreasen D; Friis UG; Uhrenholt TR; Jensen BL; Skøtt O; Hansen PB
    Hypertension; 2006 Apr; 47(4):735-41. PubMed ID: 16505211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular regions underlying the activation of low- and high-voltage activating calcium channels.
    Li J; Stevens L; Wray D
    Eur Biophys J; 2005 Nov; 34(8):1017-29. PubMed ID: 15924245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels.
    Puckerin AA; Chang DD; Shuja Z; Choudhury P; Scholz J; Colecraft HM
    Proc Natl Acad Sci U S A; 2018 Nov; 115(47):12051-12056. PubMed ID: 30397133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive and non-competitive regulation of calcium-dependent inactivation in CaV1.2 L-type Ca2+ channels by calmodulin and Ca2+-binding protein 1.
    Oz S; Benmocha A; Sasson Y; Sachyani D; Almagor L; Lee A; Hirsch JA; Dascal N
    J Biol Chem; 2013 May; 288(18):12680-91. PubMed ID: 23530039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels.
    Hoda JC; Zaghetto F; Koschak A; Striessnig J
    J Neurosci; 2005 Jan; 25(1):252-9. PubMed ID: 15634789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective blockade of Ca
    Mesirca P; Chemin J; Barrère C; Torre E; Gallot L; Monteil A; Bidaud I; Diochot S; Lazdunski M; Soong TW; Barrère-Lemaire S; Mangoni ME; Nargeot J
    Nat Commun; 2024 Jan; 15(1):54. PubMed ID: 38167790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.