These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26049108)

  • 1. Constitutive activation of Drosophila CncC transcription factor reduces lipid formation in the fat body.
    Karim MR; Taniguchi H; Kobayashi A
    Biochem Biophys Res Commun; 2015 Aug; 463(4):693-8. PubMed ID: 26049108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel role for Drosophila MESR4 in lipid metabolism.
    Tsuda-Sakurai K; Seong KH; Horiuchi J; Aigaki T; Tsuda M
    Genes Cells; 2015 Apr; 20(4):358-65. PubMed ID: 25639854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of Complex Formation between Drosophila Nrf2 and GATA4 Factors at Selective Chromatin Loci Demonstrates Transcription Coactivation.
    Neidviecky E; Deng H
    Cells; 2023 Mar; 12(6):. PubMed ID: 36980279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila.
    Bennick RA; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2019 Aug; 516(3):928-933. PubMed ID: 31277943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Declining signal dependence of Nrf2-MafS-regulated gene expression correlates with aging phenotypes.
    Rahman MM; Sykiotis GP; Nishimura M; Bodmer R; Bohmann D
    Aging Cell; 2013 Aug; 12(4):554-62. PubMed ID: 23521918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transportin-serine/arginine-rich (Tnpo-SR) proteins are necessary for proper lipid storage in the Drosophila fat body.
    Nagle C; Bhogal JK; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2022 Mar; 596():1-5. PubMed ID: 35104661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nk-2 box of the Drosophila homeodomain protein, Vnd, contributes to its repression activity in a Groucho-dependent manner.
    Uhler J; Zhang H; Syu LJ; Mellerick DM
    Mech Dev; 2007 Jan; 124(1):1-10. PubMed ID: 17070676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in
    Yamada T; Habara O; Kubo H; Nishimura T
    Development; 2018 Mar; 145(6):. PubMed ID: 29467247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein.
    Chatterjee N; Tian M; Spirohn K; Boutros M; Bohmann D
    PLoS Genet; 2016 May; 12(5):e1006072. PubMed ID: 27233051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiomyocyte Regulation of Systemic Lipid Metabolism by the Apolipoprotein B-Containing Lipoproteins in Drosophila.
    Lee S; Bao H; Ishikawa Z; Wang W; Lim HY
    PLoS Genet; 2017 Jan; 13(1):e1006555. PubMed ID: 28095410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the Drosophila model to lipid droplet research.
    Kühnlein RP
    Prog Lipid Res; 2011 Oct; 50(4):348-56. PubMed ID: 21620889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune-metabolic interaction in Drosophila.
    Dionne M
    Fly (Austin); 2014; 8(2):75-9. PubMed ID: 25483252
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Spiers JG; Breda C; Robinson S; Giorgini F; Steinert JR
    Front Mol Neurosci; 2019; 12():86. PubMed ID: 31040766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila Lipid Storage Droplet 2 gene (Lsd-2) is expressed and controls lipid storage in wing imaginal discs.
    Fauny JD; Silber J; Zider A
    Dev Dyn; 2005 Mar; 232(3):725-32. PubMed ID: 15704138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. orsai, the Drosophila homolog of human ETFRF1, links lipid catabolism to growth control.
    Fernandez-Acosta M; Romero JI; Bernabó G; Velázquez-Campos GM; Gonzalez N; Mares ML; Werbajh S; Avendaño-Vázquez LA; Rechberger GN; Kühnlein RP; Marino-Buslje C; Cantera R; Rezaval C; Ceriani MF
    BMC Biol; 2022 Oct; 20(1):233. PubMed ID: 36266680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wds-Mediated H3K4me3 Modification Regulates Lipid Synthesis and Transport in
    Zhao T; Wang M; Li Z; Li H; Yuan D; Zhang X; Guo M; Qian W; Cheng D
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-mediated regulation of Dp53 in the Drosophila fat body contributes to metabolic adaptation to nutrient deprivation.
    Barrio L; Dekanty A; Milán M
    Cell Rep; 2014 Jul; 8(2):528-41. PubMed ID: 25017064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of SR protein kinases in regulating lipid storage in the Drosophila fat body.
    Mercier J; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2023 Mar; 649():10-15. PubMed ID: 36738578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Exchangeable Apolipoprotein Nplp2 Sustains Lipid Flow and Heat Acclimation in Drosophila.
    Rommelaere S; Boquete JP; Piton J; Kondo S; Lemaitre B
    Cell Rep; 2019 Apr; 27(3):886-899.e6. PubMed ID: 30995484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila.
    Liu Y; Bao H; Wang W; Lim HY
    PLoS Genet; 2019 Nov; 15(11):e1008487. PubMed ID: 31725726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.