These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 26049146)

  • 1. Effects of lesions on synchrony and metastability in cortical networks.
    Váša F; Shanahan M; Hellyer PJ; Scott G; Cabral J; Leech R
    Neuroimage; 2015 Sep; 118():456-67. PubMed ID: 26049146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.
    Schmidt R; LaFleur KJ; de Reus MA; van den Berg LH; van den Heuvel MP
    BMC Neurosci; 2015 Sep; 16():54. PubMed ID: 26329640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local polymorphic delta activity in cortical lesions causes global decreases in functional connectivity.
    van Dellen E; Hillebrand A; Douw L; Heimans JJ; Reijneveld JC; Stam CJ
    Neuroimage; 2013 Dec; 83():524-32. PubMed ID: 23769919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.
    Hellyer PJ; Scott G; Shanahan M; Sharp DJ; Leech R
    J Neurosci; 2015 Jun; 35(24):9050-63. PubMed ID: 26085630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metastable neural dynamics in Alzheimer's disease are disrupted by lesions to the structural connectome.
    Alderson TH; Bokde ALW; Kelso JAS; Maguire L; Coyle D;
    Neuroimage; 2018 Dec; 183():438-455. PubMed ID: 30130642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-Dependent Variability and Quantitative Regimes in Graph-Theoretic Representations of Human Cortical Networks.
    Irimia A; Van Horn JD
    Brain Connect; 2016 Mar; 6(2):152-63. PubMed ID: 26596775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network centrality in the human functional connectome.
    Zuo XN; Ehmke R; Mennes M; Imperati D; Castellanos FX; Sporns O; Milham MP
    Cereb Cortex; 2012 Aug; 22(8):1862-75. PubMed ID: 21968567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rich club organization supports a diverse set of functional network configurations.
    Senden M; Deco G; de Reus MA; Goebel R; van den Heuvel MP
    Neuroimage; 2014 Aug; 96():174-82. PubMed ID: 24699017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why data coherence and quality is critical for understanding interareal cortical networks.
    Kennedy H; Knoblauch K; Toroczkai Z
    Neuroimage; 2013 Oct; 80():37-45. PubMed ID: 23603347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The parcellation-based connectome: limitations and extensions.
    de Reus MA; van den Heuvel MP
    Neuroimage; 2013 Oct; 80():397-404. PubMed ID: 23558097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome.
    Aqil M; Atasoy S; Kringelbach ML; Hindriks R
    PLoS Comput Biol; 2021 Jan; 17(1):e1008310. PubMed ID: 33507899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human connectome: origins and challenges.
    Sporns O
    Neuroimage; 2013 Oct; 80():53-61. PubMed ID: 23528922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom up modeling of the connectome: linking structure and function in the resting brain and their changes in aging.
    Nakagawa TT; Jirsa VK; Spiegler A; McIntosh AR; Deco G
    Neuroimage; 2013 Oct; 80():318-29. PubMed ID: 23629050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial organisation of the mesoscale connectome: A feature influencing synchrony and metastability of network dynamics.
    Mackay M; Huo S; Kaiser M
    PLoS Comput Biol; 2023 Aug; 19(8):e1011349. PubMed ID: 37552650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study.
    Messé A; Rudrauf D; Giron A; Marrelec G
    Neuroimage; 2015 May; 111():65-75. PubMed ID: 25682944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in network synchrony reveal resting-state functional networks.
    Vuksanović V; Hövel P
    Chaos; 2015 Feb; 25(2):023116. PubMed ID: 25725652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain organization into resting state networks emerges at criticality on a model of the human connectome.
    Haimovici A; Tagliazucchi E; Balenzuela P; Chialvo DR
    Phys Rev Lett; 2013 Apr; 110(17):178101. PubMed ID: 23679783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics on networks: the role of local dynamics and global networks on the emergence of hypersynchronous neural activity.
    Schmidt H; Petkov G; Richardson MP; Terry JR
    PLoS Comput Biol; 2014 Nov; 10(11):e1003947. PubMed ID: 25393751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI.
    Kong XZ; Liu Z; Huang L; Wang X; Yang Z; Zhou G; Zhen Z; Liu J
    PLoS One; 2015; 10(11):e0141840. PubMed ID: 26536598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.