These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26049404)

  • 1. Mouth rinsing and ingestion of a bitter-tasting solution increases corticomotor excitability in male competitive cyclists.
    Gam S; Guelfi KJ; Hammond G; Fournier PA
    Eur J Appl Physiol; 2015 Oct; 115(10):2199-204. PubMed ID: 26049404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouth rinsing with a bitter solution without ingestion does not improve sprint cycling performance.
    Gam S; Tan M; Guelfi KJ; Fournier PA
    Eur J Appl Physiol; 2015 Jan; 115(1):129-38. PubMed ID: 25236837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouth rinsing and ingesting a bitter solution improves sprint cycling performance.
    Gam S; Guelfi KJ; Fournier PA
    Med Sci Sports Exerc; 2014 Aug; 46(8):1648-57. PubMed ID: 24504430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Insights into Enhancing Maximal Exercise Performance Through the Use of a Bitter Tastant.
    Gam S; Guelfi KJ; Fournier PA
    Sports Med; 2016 Oct; 46(10):1385-90. PubMed ID: 27000831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouth rinsing and ingesting salty or bitter solutions does not influence corticomotor excitability or neuromuscular function.
    Gray E; Cavaleri R; Siegler J
    Eur J Appl Physiol; 2023 Jun; 123(6):1179-1189. PubMed ID: 36700971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouth Rinsing and Ingestion of Unpleasant Salty or Bitter Solutions Does Not Improve Cycling Sprint Performance in Trained Cyclists.
    Gray EA; Cavaleri R; Siegler JC
    Int J Sport Nutr Exerc Metab; 2023 Nov; 33(6):316-322. PubMed ID: 37591506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbohydrate in the mouth immediately facilitates motor output.
    Gant N; Stinear CM; Byblow WD
    Brain Res; 2010 Sep; 1350():151-8. PubMed ID: 20388497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature.
    Halkjaer L; Melsen B; McMillan AS; Svensson P
    Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined glucose ingestion and mouth rinsing improves sprint cycling performance.
    Chong E; Guelfi KJ; Fournier PA
    Int J Sport Nutr Exerc Metab; 2014 Dec; 24(6):605-12. PubMed ID: 24668608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement.
    Miyaguchi S; Onishi H; Kojima S; Sugawara K; Tsubaki A; Kirimoto H; Tamaki H; Yamamoto N
    Brain Res; 2013 Sep; 1529():83-91. PubMed ID: 23891715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency.
    Mang CS; Lagerquist O; Collins DF
    Exp Brain Res; 2010 May; 203(1):11-20. PubMed ID: 20217400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.
    Gilio F; Iacovelli E; Frasca V; Gabriele M; Giacomelli E; De Lena C; Cipriani AM; Inghilleri M
    Neurosci Lett; 2009 May; 455(1):1-3. PubMed ID: 19429094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ingesting a Bitter Solution: The Sweet Touch to Increasing Short-Term Cycling Performance.
    Etxebarria N; Ross ML; Clark B; Burke LM
    Int J Sports Physiol Perform; 2019 Jul; 14(6):727–732. PubMed ID: 30427232
    [No Abstract]   [Full Text] [Related]  

  • 14. Corticospinal excitability is dependent on the parameters of peripheral electric stimulation: a preliminary study.
    Chipchase LS; Schabrun SM; Hodges PW
    Arch Phys Med Rehabil; 2011 Sep; 92(9):1423-30. PubMed ID: 21620374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults.
    Rogasch NC; Dartnall TJ; Cirillo J; Nordstrom MA; Semmler JG
    J Appl Physiol (1985); 2009 Dec; 107(6):1874-83. PubMed ID: 19833810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Paired-pulse rTMS at trans-synaptic intervals increases corticomotor excitability and reduces the rate of force loss during a fatiguing exercise of the hand.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Nov; 175(4):626-32. PubMed ID: 16783555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of periodontal afferent inputs on corticomotor excitability in humans.
    Zhang Y; Boudreau S; Wang M; Wang K; Sessle B; Arendt-Nielsen L; Svensson P
    J Oral Rehabil; 2010 Jan; 37(1):39-47. PubMed ID: 19889035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of coordination mode on use-dependent plasticity.
    Ackerley SJ; Stinear CM; Byblow WD
    Clin Neurophysiol; 2007 Aug; 118(8):1759-66. PubMed ID: 17569579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central excitability does not limit postfatigue voluntary activation of quadriceps femoris.
    Kalmar JM; Cafarelli E
    J Appl Physiol (1985); 2006 Jun; 100(6):1757-64. PubMed ID: 16424071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interventional repetitive I-wave transcranial magnetic stimulation (TMS): the dimension of stimulation duration.
    Murray LM; Nosaka K; Thickbroom GW
    Brain Stimul; 2011 Oct; 4(4):261-5. PubMed ID: 22032741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.