BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26049457)

  • 1. Application of two-dimensional infrared spectroscopy to benchmark models for the amide I band of proteins.
    Bondarenko AS; Jansen TL
    J Chem Phys; 2015 Jun; 142(21):212437. PubMed ID: 26049457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Spectral Simulation Protocols for the Amide I Band of Proteins.
    Cunha AV; Bondarenko AS; Jansen TL
    J Chem Theory Comput; 2016 Aug; 12(8):3982-92. PubMed ID: 27348022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of model parameters for describing the amide I spectrum of a large set of proteins.
    Karjalainen EL; Ersmark T; Barth A
    J Phys Chem B; 2012 Apr; 116(16):4831-42. PubMed ID: 22458674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amide I two-dimensional infrared spectroscopy: methods for visualizing the vibrational structure of large proteins.
    Baiz CR; Reppert M; Tokmakoff A
    J Phys Chem A; 2013 Jul; 117(29):5955-61. PubMed ID: 23228111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic frequency shifts in amide I vibrational spectra: direct parameterization against experiment.
    Reppert M; Tokmakoff A
    J Chem Phys; 2013 Apr; 138(13):134116. PubMed ID: 23574217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal mode calculation and infrared spectroscopy of proteins in water solution: Relationship between amide I transition dipole strength and secondary structure.
    Ripanti F; Luchetti N; Nucara A; Minicozzi V; Venere AD; Filabozzi A; Carbonaro M
    Int J Biol Macromol; 2021 Aug; 185():369-376. PubMed ID: 34157332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin.
    Karjalainen EL; Barth A
    J Phys Chem B; 2012 Apr; 116(15):4448-56. PubMed ID: 22435481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DFT-based simulations of IR amide I' spectra for a small protein in solution. Comparison of explicit and empirical solvent models.
    Grahnen JA; Amunson KE; Kubelka J
    J Phys Chem B; 2010 Oct; 114(40):13011-20. PubMed ID: 20857992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amide I vibrational dynamics of N-methylacetamide in polar solvents: the role of electrostatic interactions.
    DeCamp MF; DeFlores L; McCracken JM; Tokmakoff A; Kwac K; Cho M
    J Phys Chem B; 2005 Jun; 109(21):11016-26. PubMed ID: 16852342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanics force field-based map for peptide amide-I mode in solution and its application to alanine di- and tripeptides.
    Cai K; Han C; Wang J
    Phys Chem Chem Phys; 2009 Oct; 11(40):9149-59. PubMed ID: 19812835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of two-dimensional sum-frequency generation response functions: application to amide I in proteins.
    Liang C; Jansen TL
    J Phys Chem B; 2013 Jun; 117(23):6937-45. PubMed ID: 23656353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining in situ protein conformation and orientation from the amide-I sum-frequency generation spectrum: theory and experiment.
    Roeters SJ; van Dijk CN; Torres-Knoop A; Backus EH; Campen RK; Bonn M; Woutersen S
    J Phys Chem A; 2013 Jul; 117(29):6311-22. PubMed ID: 23566310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative reconstruction of the amide I contour in the IR spectra of globular proteins: from structure to spectrum.
    Brauner JW; Flach CR; Mendelsohn R
    J Am Chem Soc; 2005 Jan; 127(1):100-9. PubMed ID: 15631459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: linear and nonlinear vibrational spectra.
    Kwac K; Lee H; Cho M
    J Chem Phys; 2004 Jan; 120(3):1477-90. PubMed ID: 15268273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the vibrational dynamics and nonlinear infrared spectra of coupled amide I and II modes in peptides.
    Dijkstra AG; Jansen Tl; Knoester J
    J Phys Chem B; 2011 May; 115(18):5392-401. PubMed ID: 21208013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of two-dimensional infrared Raman spectroscopy with application to proteins.
    van Hengel CDN; van Adrichem KE; Jansen TLC
    J Chem Phys; 2023 Feb; 158(6):064106. PubMed ID: 36792507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amide-I characteristics of helical β-peptides by linear infrared measurement and computations.
    Zhao J; Shi J; Wang J
    J Phys Chem B; 2014 Jan; 118(1):94-106. PubMed ID: 24328259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of electrostatic models for the amide-I and -II modes: linear and two-dimensional infrared spectra.
    Maekawa H; Ge NH
    J Phys Chem B; 2010 Jan; 114(3):1434-46. PubMed ID: 20050636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparability of protein therapeutics: quantitative comparison of second-derivative amide I infrared spectra.
    D'antonio J; Murphy BM; Manning MC; Al-Azzam WA
    J Pharm Sci; 2012 Jun; 101(6):2025-33. PubMed ID: 22447648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.