BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26049464)

  • 1. The structure of salt bridges between Arg(+) and Glu(-) in peptides investigated with 2D-IR spectroscopy: Evidence for two distinct hydrogen-bond geometries.
    Huerta-Viga A; Amirjalayer S; Domingos SR; Meuzelaar H; Rupenyan A; Woutersen S
    J Chem Phys; 2015 Jun; 142(21):212444. PubMed ID: 26049464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations.
    Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D
    J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide.
    Meier M; Lustig A; Aebi U; Burkhard P
    J Struct Biol; 2002; 137(1-2):65-72. PubMed ID: 12064934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges.
    Marti DN; Bosshard HR
    J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase salt bridge interactions between glutamic acid and arginine.
    Jaeqx S; Oomens J; Rijs AM
    Phys Chem Chem Phys; 2013 Oct; 15(38):16341-52. PubMed ID: 23999680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative helix stabilization by complex Arg-Glu salt bridges.
    Olson CA; Spek EJ; Shi Z; Vologodskii A; Kallenbach NR
    Proteins; 2001 Aug; 44(2):123-32. PubMed ID: 11391775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A salt-bridge structure in solution revealed by 2D-IR spectroscopy.
    Huerta-Viga A; Domingos SR; Amirjalayer S; Woutersen S
    Phys Chem Chem Phys; 2014 Aug; 16(30):15784-6. PubMed ID: 24676430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of arginine-glutamate salt bridges to helix stability.
    Walker KD; Causgrove TP
    J Mol Model; 2009 Oct; 15(10):1213-9. PubMed ID: 19263093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt bridges do not stabilize polyproline II helices.
    Whittington SJ; Creamer TP
    Biochemistry; 2003 Dec; 42(49):14690-5. PubMed ID: 14661982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of long and stable de novo single alpha-helix domains provides novel insight into their stability.
    Wolny M; Batchelor M; Bartlett GJ; Baker EG; Kurzawa M; Knight PJ; Dougan L; Woolfson DN; Paci E; Peckham M
    Sci Rep; 2017 Mar; 7():44341. PubMed ID: 28287151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lysine side chain length on intra-helical glutamate--lysine ion pairing interactions.
    Cheng RP; Girinath P; Ahmad R
    Biochemistry; 2007 Sep; 46(37):10528-37. PubMed ID: 17718542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of side chain length on intrahelical interactions between carboxylate- and guanidinium-containing amino acids.
    Kuo HT; Yang PA; Wang WR; Hsu HC; Wu CH; Ting YT; Weng MH; Kuo LH; Cheng RP
    Amino Acids; 2014 Aug; 46(8):1867-83. PubMed ID: 24744084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bulky side chains and non-native salt bridges slow down the folding of a cross-linked helical peptide: a combined molecular dynamics and time-resolved infrared spectroscopy study.
    Paoli B; Seeber M; Backus EH; Ihalainen JA; Hamm P; Caflisch A
    J Phys Chem B; 2009 Apr; 113(13):4435-42. PubMed ID: 19256526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt bridges destabilize a leucine zipper designed for maximized ion pairing between helices.
    Phelan P; Gorfe AA; Jelesarov I; Marti DN; Warwicker J; Bosshard HR
    Biochemistry; 2002 Mar; 41(9):2998-3008. PubMed ID: 11863438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward detecting the formation of a single helical turn by 2D IR cross peaks between the amide-I and -II modes.
    Maekawa H; De Poli M; Moretto A; Toniolo C; Ge NH
    J Phys Chem B; 2009 Aug; 113(34):11775-86. PubMed ID: 19642666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges.
    Prell JS; O'Brien JT; Steill JD; Oomens J; Williams ER
    J Am Chem Soc; 2009 Aug; 131(32):11442-9. PubMed ID: 19624125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of a salt-bridge model system in water and DMSO.
    Lotze S; Bakker HJ
    J Chem Phys; 2015 Jun; 142(21):212436. PubMed ID: 26049456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.