These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26049476)

  • 1. Analysis and comparison of CVS-ADC approaches up to third order for the calculation of core-excited states.
    Wenzel J; Holzer A; Wormit M; Dreuw A
    J Chem Phys; 2015 Jun; 142(21):214104. PubMed ID: 26049476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculating X-ray Absorption Spectra of Open-Shell Molecules with the Unrestricted Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator.
    Wenzel J; Wormit M; Dreuw A
    J Chem Theory Comput; 2014 Oct; 10(10):4583-98. PubMed ID: 26588152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculating core-level excitations and X-ray absorption spectra of medium-sized closed-shell molecules with the algebraic-diagrammatic construction scheme for the polarization propagator.
    Wenzel J; Wormit M; Dreuw A
    J Comput Chem; 2014 Oct; 35(26):1900-15. PubMed ID: 25130619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical Properties, Exciton Analysis, and Visualization of Core-Excited States: An Intermediate State Representation Approach.
    Wenzel J; Dreuw A
    J Chem Theory Comput; 2016 Mar; 12(3):1314-30. PubMed ID: 26845396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unrestricted algebraic diagrammatic construction scheme of second order for the calculation of excited states of medium-sized and large molecules.
    Starcke JH; Wormit M; Dreuw A
    J Chem Phys; 2009 Jan; 130(2):024104. PubMed ID: 19154016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unitary coupled-cluster approach for the calculation of core-excited states and x-ray absorption spectra.
    Thielen SM; Hodecker M; Piazolo J; Rehn DR; Dreuw A
    J Chem Phys; 2021 Apr; 154(15):154108. PubMed ID: 33887935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: efficient implementation and benchmarking.
    Harbach PH; Wormit M; Dreuw A
    J Chem Phys; 2014 Aug; 141(6):064113. PubMed ID: 25134557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of photoelectron spectra using the reflection principle in combination with unrestricted excitation ADC2 to assess the accuracy of excited-state calculations.
    Knippenberg S; Eisenbrandt P; Šištík L; Slavíček P; Dreuw A
    Chemphyschem; 2011 Dec; 12(17):3180-91. PubMed ID: 22021222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced-Cost Second-Order Algebraic-Diagrammatic Construction Method for Core Excitations.
    Mester D; Kállay M
    J Chem Theory Comput; 2023 May; 19(10):2850-2862. PubMed ID: 37132379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating X-ray Emission Spectroscopy with Algebraic Diagrammatic Construction Schemes for the Polarization Propagator.
    Fransson T; Dreuw A
    J Chem Theory Comput; 2019 Jan; 15(1):546-556. PubMed ID: 30481466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the restricted virtual space approximation in the algebraic-diagrammatic construction scheme for the polarization propagator to speed-up excited-state calculations.
    Yang C; Dreuw A
    J Comput Chem; 2017 Jun; 38(17):1528-1537. PubMed ID: 28349599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the scaled-opposite-spin approximation to algebraic diagrammatic construction schemes of second order.
    Krauter CM; Pernpointner M; Dreuw A
    J Chem Phys; 2013 Jan; 138(4):044107. PubMed ID: 23387568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying the error of the core-valence separation approximation.
    Herbst MF; Fransson T
    J Chem Phys; 2020 Aug; 153(5):054114. PubMed ID: 32770930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algebraic-diagrammatic construction scheme for the polarization propagator including ground-state coupled-cluster amplitudes. I. Excitation energies.
    Hodecker M; Dempwolff AL; Rehn DR; Dreuw A
    J Chem Phys; 2019 May; 150(17):174104. PubMed ID: 31067906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Hybrid Density Functional Theory for Core Excitations: Theory and Benchmark Calculations.
    Mester D; Kállay M
    J Chem Theory Comput; 2023 Feb; 19(4):1310-1321. PubMed ID: 36721871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.
    Ruberti M; Yun R; Gokhberg K; Kopelke S; Cederbaum LS; Tarantelli F; Averbukh V
    J Chem Phys; 2014 May; 140(18):184107. PubMed ID: 24832253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.
    Corzo HH; Galano A; Dolgounitcheva O; Zakrzewski VG; Ortiz JV
    J Phys Chem A; 2015 Aug; 119(33):8813-21. PubMed ID: 26226061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation and Application of the Frozen Density Embedding Theory with the Algebraic Diagrammatic Construction Scheme for the Polarization Propagator up to Third Order.
    Prager S; Zech A; Wesolowski TA; Dreuw A
    J Chem Theory Comput; 2017 Oct; 13(10):4711-4725. PubMed ID: 28862857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algebraic diagrammatic construction for the polarisation propagator in combination with effective fragment potentials.
    Sen R; Dreuw A; Faraji S
    Phys Chem Chem Phys; 2019 Feb; 21(7):3683-3694. PubMed ID: 30632554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.