These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach. Yariv E; Schnitzer O Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403 [TBL] [Abstract][Full Text] [Related]
47. Brownian motion of boomerang colloidal particles. Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH Phys Rev Lett; 2013 Oct; 111(16):160603. PubMed ID: 24182246 [TBL] [Abstract][Full Text] [Related]
48. Confined mobility in biomembranes modeled by early stage Brownian motion. Gmachowski L Math Biosci; 2014 Aug; 254():1-5. PubMed ID: 24909813 [TBL] [Abstract][Full Text] [Related]
49. Duality of diffusion dynamics in particle motion in soft-mode turbulence. Suzuki M; Sueto H; Hosokawa Y; Muramoto N; Narumi T; Hidaka Y; Kai S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042147. PubMed ID: 24229155 [TBL] [Abstract][Full Text] [Related]
50. Transport properties of ferrofluids. Hernández-Contreras M; Ruíz-Estrada H Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031202. PubMed ID: 14524753 [TBL] [Abstract][Full Text] [Related]
51. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions. Chakrabarty A; Wang F; Fan CZ; Sun K; Wei QH Langmuir; 2013 Nov; 29(47):14396-402. PubMed ID: 24171648 [TBL] [Abstract][Full Text] [Related]
52. Brownian aggregation rate of colloid particles with several active sites. Nekrasov VM; Polshchitsin AA; Yurkin MA; Yakovleva GE; Maltsev VP; Chernyshev AV J Chem Phys; 2014 Aug; 141(6):064309. PubMed ID: 25134573 [TBL] [Abstract][Full Text] [Related]
53. Active ideal sedimentation: exact two-dimensional steady states. Hermann S; Schmidt M Soft Matter; 2018 Feb; 14(9):1614-1621. PubMed ID: 29411843 [TBL] [Abstract][Full Text] [Related]
54. Brownian motion of aggregating nanoparticles studied by photon correlation spectroscopy and measurements of dynamic magnetic properties. Petersson K; Ilver D; Johansson C; Krozer A Anal Chim Acta; 2006 Jul; 573-574():138-46. PubMed ID: 17723517 [TBL] [Abstract][Full Text] [Related]
56. Coiled to diffuse: Brownian motion of a helical bacterium. Butenko AV; Mogilko E; Amitai L; Pokroy B; Sloutskin E Langmuir; 2012 Sep; 28(36):12941-7. PubMed ID: 22891749 [TBL] [Abstract][Full Text] [Related]
57. Two-particle random walk simulation of outer-sphere nuclear relaxation. Fries PH J Chem Phys; 2010 Jun; 132(22):224103. PubMed ID: 20550386 [TBL] [Abstract][Full Text] [Related]
58. Diffusion of interacting particles in one dimension. Kumar D Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021133. PubMed ID: 18850812 [TBL] [Abstract][Full Text] [Related]
59. Smoluchowski equation approach for quantum Brownian motion in a tilted periodic potential. Coffey WT; Kalmykov YP; Titov SV; Cleary L Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031114. PubMed ID: 18851000 [TBL] [Abstract][Full Text] [Related]
60. Simultaneous investigation of sedimentation and diffusion of a single colloidal particle near an interface. Oetama RJ; Walz JY J Chem Phys; 2006 Apr; 124(16):164713. PubMed ID: 16674163 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]